forked from IrisRainbowNeko/pixiv_AI_crawler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabeler_folder.py
39 lines (32 loc) · 1.19 KB
/
labeler_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
import cv2
import numpy as np
import json
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
img_exts=['jpg', 'png', 'jpeg', 'bmp', 'tif']
def img_resize(image, width_new = 1280, height_new = 720):
height, width = image.shape[0], image.shape[1]
# 设置新的图片分辨率框架
# 判断图片的长宽比率
if width / height >= width_new / height_new:
img_new = cv2.resize(image, (width_new, int(height * width_new / width)))
else:
img_new = cv2.resize(image, (int(width * height_new / height), height_new))
return img_new
def make_label(root, save_path):
label_dict={}
root=Path(root)
cls_list=list(filter(lambda x:os.path.isdir(root / x), os.listdir(root)))
for i, cls in enumerate(cls_list):
imgs=os.listdir(root / cls)
for img in imgs:
if img[img.rfind('.')+1:].lower() in img_exts:
label_dict[os.path.join(cls, img)] = i
with open(save_path, 'w', encoding='utf8') as f:
json.dump(label_dict, f, ensure_ascii=False)
return label_dict
if __name__ == '__main__':
root='images_group/' #图像文件夹路径
label_dict=make_label(root, 'dataset.json')