forked from tensorflow/tfx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
150 lines (132 loc) · 5.46 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Lint as: python2, python3
# Copyright 2019 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Package Setup script for TFX."""
from __future__ import print_function
from distutils import spawn
import glob
import os
import subprocess
import sys
from setuptools import find_packages
from setuptools import setup
# Find the Protocol Compiler.
if 'PROTOC' in os.environ and os.path.exists(os.environ['PROTOC']):
protoc = os.environ['PROTOC']
elif os.path.exists('../src/protoc'):
protoc = '../src/protoc'
elif os.path.exists('../src/protoc.exe'):
protoc = '../src/protoc.exe'
elif os.path.exists('../vsprojects/Debug/protoc.exe'):
protoc = '../vsprojects/Debug/protoc.exe'
elif os.path.exists('../vsprojects/Release/protoc.exe'):
protoc = '../vsprojects/Release/protoc.exe'
else:
protoc = spawn.find_executable('protoc')
def generate_proto(source):
"""Invokes the Protocol Compiler to generate a _pb2.py."""
output = source.replace('.proto', '_pb2.py')
if (not os.path.exists(output) or
(os.path.exists(source) and
os.path.getmtime(source) > os.path.getmtime(output))):
print('Generating %s...' % output)
if not os.path.exists(source):
sys.stderr.write('Cannot find required file: %s\n' % source)
sys.exit(-1)
if protoc is None:
sys.stderr.write(
'protoc is not installed nor found in ../src. Please compile it '
'or install the binary package.\n')
sys.exit(-1)
protoc_command = [protoc, '-I.', '--python_out=.', source]
if subprocess.call(protoc_command) != 0:
sys.exit(-1)
_PROTO_FILE_PATTERNS = [
'tfx/proto/*.proto',
'tfx/orchestration/kubeflow/proto/*.proto',
]
for file_pattern in _PROTO_FILE_PATTERNS:
for proto_file in glob.glob(file_pattern):
generate_proto(proto_file)
# Get various package dependencies list.
with open('tfx/dependencies.py') as fp:
globals_dict = {}
exec(fp.read(), globals_dict) # pylint: disable=exec-used
_make_required_install_packages = globals_dict['make_required_install_packages']
_make_extra_packages_docker_image = globals_dict[
'make_extra_packages_docker_image']
_make_all_dependency_packages = globals_dict['make_all_dependency_packages']
# Get version from version module.
with open('tfx/version.py') as fp:
globals_dict = {}
exec(fp.read(), globals_dict) # pylint: disable=exec-used
__version__ = globals_dict['__version__']
# Get the long description from the README file.
with open('README.md') as fp:
_LONG_DESCRIPTION = fp.read()
setup(
name='tfx',
version=__version__,
author='Google LLC',
author_email='[email protected]',
license='Apache 2.0',
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
],
namespace_packages=[],
install_requires=_make_required_install_packages(),
extras_require={
# In order to use 'docker-image' or 'all', system libraries specified
# under 'tfx/tools/docker/Dockerfile' are required
'docker-image': _make_extra_packages_docker_image(),
'all': _make_all_dependency_packages(),
},
setup_requires=['pytest-runner'],
python_requires='>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,<4',
packages=find_packages(),
include_package_data=True,
description='TensorFlow Extended (TFX) is a TensorFlow-based general-purpose machine learning platform implemented at Google',
long_description=_LONG_DESCRIPTION,
long_description_content_type='text/markdown',
keywords='tensorflow tfx',
url='https://www.tensorflow.org/tfx',
download_url='https://github.com/tensorflow/tfx/tags',
requires=[],
# Below console_scripts, each line identifies one console script. The first
# part before the equals sign (=) which is 'tfx', is the name of the script
# that should be generated, the second part is the import path followed by a
# colon (:) with the Click command group. After installation, the user can
# invoke the CLI using "tfx <command_group> <sub_command> <flags>"
entry_points="""
[console_scripts]
tfx=tfx.tools.cli.cli_main:cli_group
""")