forked from torch/cunn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSoftPlus.cu
86 lines (69 loc) · 3.01 KB
/
SoftPlus.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
struct softPlusupdateOutput_functor
{
const float threshold;
const float beta;
softPlusupdateOutput_functor(float threshold_, float beta_) : threshold(threshold_), beta(beta_) {}
__host__ __device__ float operator()(const float& input) const
{
float betain = beta * input;
return ((betain) > threshold) ? input : (1/beta) * log1p(exp(betain));
}
};
static int cunn_SoftPlus_updateOutput(lua_State *L)
{
THCudaTensor *input = (THCudaTensor*)luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *output = (THCudaTensor*)luaT_getfieldcheckudata(L, 1, "output", "torch.CudaTensor");
float beta = luaT_getfieldchecknumber(L, 1, "beta");
float threshold = luaT_getfieldchecknumber(L, 1, "threshold");
long size = THCudaTensor_nElement(input);
input = THCudaTensor_newContiguous(input);
THCudaTensor_resizeAs(output, input);
thrust::device_ptr<float> output_data(THCudaTensor_data(output));
thrust::device_ptr<float> input_data(THCudaTensor_data(input));
thrust::transform(input_data, input_data+size, output_data,
softPlusupdateOutput_functor(threshold, beta));
THCudaTensor_free(input);
return 1;
}
struct softPlusupdateGradInput_functor
{
const float threshold;
const float beta;
softPlusupdateGradInput_functor(float threshold_, float beta_) : threshold(threshold_), beta(beta_) {}
__host__ __device__ float operator()(const float& output, const float& gradOutput) const
{
float betaout = beta * output;
float exp_bo = exp(betaout);
return ((betaout) > threshold) ? gradOutput : gradOutput * (exp_bo - 1) / exp_bo;
}
};
static int cunn_SoftPlus_updateGradInput(lua_State *L)
{
THCudaTensor *output = (THCudaTensor*)luaT_getfieldcheckudata(L, 1, "output", "torch.CudaTensor");
THCudaTensor *input = (THCudaTensor*)luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *gradOutput = (THCudaTensor*)luaT_checkudata(L, 3, "torch.CudaTensor");
THCudaTensor *gradInput = (THCudaTensor*)luaT_getfieldcheckudata(L, 1, "gradInput", "torch.CudaTensor");
float beta = luaT_getfieldchecknumber(L, 1, "beta");
float threshold = luaT_getfieldchecknumber(L, 1, "threshold");
long size = THCudaTensor_nElement(output);
gradOutput = THCudaTensor_newContiguous(gradOutput);
THCudaTensor_resizeAs(gradInput, output);
thrust::device_ptr<float> output_data(THCudaTensor_data(output));
thrust::device_ptr<float> gradOutput_data(THCudaTensor_data(gradOutput));
thrust::device_ptr<float> gradInput_data(THCudaTensor_data(gradInput));
thrust::transform(output_data, output_data+size, gradOutput_data, gradInput_data,
softPlusupdateGradInput_functor(threshold, beta));
THCudaTensor_free(gradOutput);
return 1;
}
static const struct luaL_Reg cunn_SoftPlus__ [] = {
{"SoftPlus_updateOutput", cunn_SoftPlus_updateOutput},
{"SoftPlus_updateGradInput", cunn_SoftPlus_updateGradInput},
{NULL, NULL}
};
void cunn_SoftPlus_init(lua_State *L)
{
luaT_pushmetatable(L, "torch.CudaTensor");
luaT_registeratname(L, cunn_SoftPlus__, "nn");
lua_pop(L,1);
}