forked from torch/cutorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTensor.c
203 lines (170 loc) · 6.93 KB
/
Tensor.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include "THC.h"
#include "THFile.h"
#include "luaT.h"
/* everything is as the generic Storage.c, except few things (see below) */
static void THCudaTensor_maskedFill(THCudaTensor *tensor, THByteTensor *mask, float value)
{
THError("not yet implemented for CUDA");
}
static void THCudaTensor_maskedCopy(THCudaTensor *tensor, THByteTensor *mask, THCudaTensor* src)
{
THError("not yet implemented for CUDA");
}
void THCudaTensor_maskedSelect(THCudaTensor *tensor, THCudaTensor* src, THByteTensor *mask)
{
THError("not yet implemented for CUDA");
}
#define real float
#define Real Cuda
#define torch_Storage_(NAME) TH_CONCAT_4(torch_,Real,Storage_,NAME)
#define torch_Storage TH_CONCAT_STRING_3(torch.,Real,Storage)
#define torch_Tensor_(NAME) TH_CONCAT_4(torch_,Real,Tensor_,NAME)
#define torch_Tensor TH_CONCAT_STRING_3(torch.,Real,Tensor)
#define TH_GENERIC_FILE "generic/Tensor.c"
#include "generic/Tensor.c"
#undef TH_GENERIC_FILE
#undef real
#undef Real
/* now we overwrite some methods specific to CudaTensor */
#define CUDA_IMPLEMENT_TENSOR_COPY(TYPEC) \
static int cutorch_##TYPEC##Tensor_copy(lua_State *L) \
{ \
TH##TYPEC##Tensor *storage = luaT_checkudata(L, 1, "torch." #TYPEC "Tensor"); \
void *src; \
if( (src = luaT_toudata(L, 2, "torch." #TYPEC "Tensor")) ) \
TH##TYPEC##Tensor_copy(storage, src); \
else if( (src = luaT_toudata(L, 2, "torch.ByteTensor")) ) \
TH##TYPEC##Tensor_copyByte(storage, src); \
else if( (src = luaT_toudata(L, 2, "torch.CharTensor")) ) \
TH##TYPEC##Tensor_copyChar(storage, src); \
else if( (src = luaT_toudata(L, 2, "torch.ShortTensor")) ) \
TH##TYPEC##Tensor_copyShort(storage, src); \
else if( (src = luaT_toudata(L, 2, "torch.IntTensor")) ) \
TH##TYPEC##Tensor_copyInt(storage, src); \
else if( (src = luaT_toudata(L, 2, "torch.LongTensor")) ) \
TH##TYPEC##Tensor_copyLong(storage, src); \
else if( (src = luaT_toudata(L, 2, "torch.FloatTensor")) ) \
TH##TYPEC##Tensor_copyFloat(storage, src); \
else if( (src = luaT_toudata(L, 2, "torch.DoubleTensor")) ) \
TH##TYPEC##Tensor_copyDouble(storage, src); \
else if( (src = luaT_toudata(L, 2, "torch.CudaTensor")) ) \
TH##TYPEC##Tensor_copyCuda(storage, src); \
else \
luaL_typerror(L, 2, "torch.*Tensor"); \
\
lua_settop(L, 1); \
return 1; \
}
CUDA_IMPLEMENT_TENSOR_COPY(Byte)
CUDA_IMPLEMENT_TENSOR_COPY(Char)
CUDA_IMPLEMENT_TENSOR_COPY(Short)
CUDA_IMPLEMENT_TENSOR_COPY(Int)
CUDA_IMPLEMENT_TENSOR_COPY(Long)
CUDA_IMPLEMENT_TENSOR_COPY(Float)
CUDA_IMPLEMENT_TENSOR_COPY(Double)
CUDA_IMPLEMENT_TENSOR_COPY(Cuda)
static void THFloatTensor_computesz(THFloatTensor *self, long **sz_, long **st_)
{
long *sz, *st, *szh;
int i;
sz = THAlloc(sizeof(long)*self->nDimension);
st = THAlloc(sizeof(long)*self->nDimension);
szh = THAlloc(sizeof(long)*self->nDimension);
for(i = self->nDimension-1; i >= 0; i--)
{
if(i == self->nDimension-1)
szh[i] = 1;
else
szh[i] = szh[i+1]*self->size[i+1];
}
memcpy(sz, szh, self->nDimension * sizeof(long));
memcpy(st, self->stride, self->nDimension * sizeof(long));
THFree(szh);
*sz_ = sz;
*st_ = st;
}
void THFloatTensor_kernel_copy(float *dst,
long *dst_sz, long *dst_st, int dst_dim,
float *src,
long *src_sz, long *src_st, int src_dim,
long n_elem)
{
long k;
for(k = 0; k < n_elem; k++)
{
long src_idx = 0;
long src_rest = k;
long dst_idx = 0;
long dst_rest = k;
int dim;
for(dim = 0; dim < dst_dim; dim++)
{
dst_idx += (dst_rest/dst_sz[dim])*dst_st[dim];
dst_rest = dst_rest % dst_sz[dim];
}
for(dim = 0; dim < src_dim; dim++)
{
src_idx += (src_rest/src_sz[dim])*src_st[dim];
src_rest = src_rest % src_sz[dim];
}
dst[dst_idx] = src[src_idx];
}
}
static int cuda_FloatTensor_fakecopy(lua_State *L)
{
THFloatTensor *self = luaT_checkudata(L, 1, "torch.FloatTensor");
THFloatTensor *src = luaT_checkudata(L, 2, "torch.FloatTensor");
long *d_self_sz, *d_self_st, *d_src_sz, *d_src_st;
long nElement = THFloatTensor_nElement(self);
THArgCheck(THFloatTensor_nElement(self) == THFloatTensor_nElement(src), 2, "sizes do not match");
THFloatTensor_computesz(self, &d_self_sz, &d_self_st);
THFloatTensor_computesz(src, &d_src_sz, &d_src_st);
THFloatTensor_kernel_copy(THFloatTensor_data(self),
d_self_sz, d_self_st, self->nDimension,
THFloatTensor_data(src),
d_src_sz, d_src_st, src->nDimension,
nElement);
THFree(d_self_sz);
THFree(d_self_st);
THFree(d_src_sz);
THFree(d_src_st);
lua_settop(L, 1);
return 1;
}
void cutorch_CudaTensor_init(lua_State* L)
{
/* the standard stuff */
torch_CudaTensor_init(L);
/* additional methods */
luaT_pushmetatable(L, "torch.FloatTensor");
lua_pushcfunction(L, cuda_FloatTensor_fakecopy);
lua_setfield(L, -2, "fakecopy");
lua_pop(L, 1);
/* the copy methods */
{
int i;
const void* tnames[8] = {"torch.ByteTensor",
"torch.CharTensor",
"torch.ShortTensor",
"torch.IntTensor",
"torch.LongTensor",
"torch.FloatTensor",
"torch.DoubleTensor",
"torch.CudaTensor"};
static int (*funcs[8])(lua_State*) = {cutorch_ByteTensor_copy,
cutorch_CharTensor_copy,
cutorch_ShortTensor_copy,
cutorch_IntTensor_copy,
cutorch_LongTensor_copy,
cutorch_FloatTensor_copy,
cutorch_DoubleTensor_copy,
cutorch_CudaTensor_copy};
for(i = 0; i < 8; i++)
{
luaT_pushmetatable(L, tnames[i]);
lua_pushcfunction(L, funcs[i]);
lua_setfield(L, -2, "copy");
lua_pop(L, 1);
}
}
}