forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReshape.lua
69 lines (59 loc) · 1.76 KB
/
Reshape.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
local Reshape, parent = torch.class('nn.Reshape', 'nn.Module')
function Reshape:__init(...)
parent.__init(self)
local arg = {...}
self.size = torch.LongStorage()
self.batchsize = torch.LongStorage()
if torch.type(arg[#arg]) == 'boolean' then
self.batchMode = arg[#arg]
table.remove(arg, #arg)
end
local n = #arg
if n == 1 and torch.typename(arg[1]) == 'torch.LongStorage' then
self.size:resize(#arg[1]):copy(arg[1])
else
self.size:resize(n)
for i=1,n do
self.size[i] = arg[i]
end
end
self.nelement = 1
self.batchsize:resize(#self.size+1)
for i=1,#self.size do
self.nelement = self.nelement * self.size[i]
self.batchsize[i+1] = self.size[i]
end
-- only used for non-contiguous input or gradOutput
self._input = torch.Tensor()
self._gradOutput = torch.Tensor()
end
function Reshape:updateOutput(input)
if not input:isContiguous() then
self._input:resizeAs(input)
self._input:copy(input)
input = self._input
end
if (self.batchMode == false) or (
(self.batchMode == nil) and
(input:nElement() == self.nelement and input:size(1) ~= 1)
) then
self.output:view(input, self.size)
else
self.batchsize[1] = input:size(1)
self.output:view(input, self.batchsize)
end
return self.output
end
function Reshape:updateGradInput(input, gradOutput)
if not gradOutput:isContiguous() then
self._gradOutput:resizeAs(gradOutput)
self._gradOutput:copy(gradOutput)
gradOutput = self._gradOutput
end
self.gradInput:viewAs(gradOutput, input)
return self.gradInput
end
function Reshape:__tostring__()
return torch.type(self) .. '(' ..
table.concat(self.size:totable(), 'x') .. ')'
end