-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel_train.py
256 lines (194 loc) · 10.7 KB
/
Model_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np
import pandas as pd
import pickle, gc, shap, math, random, time
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
from sklearn import metrics
from sklearn import model_selection
import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostClassifier
from sklearn.linear_model import LinearRegression
from sklearn.svm import NuSVR, SVR
# This script can also be used for stacking purpose by inputing training data set with oof results as features additional to earlier engineered features from different data sets.
def train_model_classification(X, y, params, groups, folds, model_type='lgb', eval_metric='auc', columns=None, plot_feature_importance=False, model=None,
verbose=10000, early_stopping_rounds=200, n_estimators=50000, weight = None, seed='no'):
"""
A function to train a variety of regression models.
Returns dictionary with oof predictions, test predictions, scores and, if necessary, feature importances.
:params: X - training data, can be pd.DataFrame
:params: X_test - test data, can be pd.DataFrame
:params: y - target
:params: folds - folds to split data
:params: model_type - type of model to use
:params: eval_metric - metric to use
:params: columns - columns to use. If None - use all columns
:params: plot_feature_importance - whether to plot feature importance of LGB
:params: model - sklearn model, works only for "sklearn" model type
"""
columns = X.columns if columns is None else columns
models = []
metrics_dict = {'auc': {'lgb_metric_name': 'auc',
'catboost_metric_name': 'AUC',
'sklearn_scoring_function': metrics.roc_auc_score},
}
result_dict = {}
# out-of-fold predictions on train data
oof = np.zeros(len(X))
scores = []
train_loss = []
feature_importance = pd.DataFrame()
if groups is None:
splits = folds.split(X)
elif groups == 'stra':
splits = folds.split(X,y)
else:
splits = folds.split(X, groups = groups)
print('no')
for fold_n, (train_index, valid_index) in enumerate(splits):
print(f'Fold {fold_n + 1} started at {time.ctime()}')
if type(X) == np.ndarray:
X_train, X_valid = X[columns][train_index], X[columns][valid_index]
y_train, y_valid = y[train_index], y[valid_index]
weight_train = weight[train_index]
else:
X_train, X_valid = X[columns].iloc[train_index], X[columns].iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
weight_train = weight[train_index]
if model_type == 'lgb':
model = lgb.LGBMClassifier(**params, n_estimators = n_estimators, n_jobs = -1)
model.fit(X_train, y_train, sample_weight = weight_train,
eval_set=[(X_train, y_train), (X_valid, y_valid)], eval_metric=metrics_dict[eval_metric]['lgb_metric_name'],
verbose=verbose, early_stopping_rounds=early_stopping_rounds)
y_pred_valid = model.predict_proba(X_valid)[:, 1]
y_pred_train = model.predict_proba(X_train)[:, 1]
models.append(model)
if model_type == 'xgb':
train_data = xgb.DMatrix(data=X_train, label=y_train, feature_names=X.columns)
valid_data = xgb.DMatrix(data=X_valid, label=y_valid, feature_names=X.columns)
watchlist = [(train_data, 'train'), (valid_data, 'valid_data')]
model = xgb.train(dtrain=train_data, num_boost_round=n_estimators, evals=watchlist, early_stopping_rounds=early_stopping_rounds, verbose_eval=verbose, params=params)
y_pred_valid = model.predict(xgb.DMatrix(X_valid, feature_names=X.columns), ntree_limit=model.best_ntree_limit)
y_pred_train = model.predict(xgb.DMatrix(X_train, feature_names=X.columns), ntree_limit=model.best_ntree_limit)
models.append(model)
if model_type == 'sklearn':
model = model
model.fit(X_train, y_train)
y_pred_valid = model.predict(X_valid).reshape(-1,)
score = metrics_dict[eval_metric]['sklearn_scoring_function'](y_valid, y_pred_valid)
print(f'Fold {fold_n}. {eval_metric}: {score:.4f}.')
print('')
models.append(model)
if model_type == 'cat':
model = CatBoostClassifier(iterations=n_estimators, eval_metric=metrics_dict[eval_metric]['catboost_metric_name'], **params,
)
model.fit(X_train, y_train, eval_set=(X_valid, y_valid), cat_features=[], use_best_model=True, verbose=verbose,early_stopping_rounds=early_stopping_rounds)
y_pred_valid = model.predict_proba(X_valid)[:,1]
y_pred_train = model.predict_proba(X_train)[:,1]
models.append(model)
oof[valid_index] = y_pred_valid.reshape(-1,)
if eval_metric != 'group_mae':
scores.append(metrics_dict[eval_metric]['sklearn_scoring_function'](y_valid, y_pred_valid))
train_loss.append(metrics_dict[eval_metric]['sklearn_scoring_function'](y_train, y_pred_train))
else:
scores.append(metrics_dict[eval_metric]['scoring_function'](y_valid, y_pred_valid, X_valid['type']))
with open(f'./models/models_{model_type}_{seed}.pickle', 'wb') as handle:
pickle.dump(models, handle, protocol = pickle.HIGHEST_PROTOCOL)
gc.collect()
if model_type == 'lgb' and plot_feature_importance:
# feature importance
fold_importance = pd.DataFrame()
fold_importance["feature"] = columns
fold_importance["importance"] = model.feature_importances_
fold_importance["shap_values"] = abs(shap.TreeExplainer(model).shap_values(X_valid)[:,:len(columns)]).mean(axis=0).T
fold_importance["fold"] = fold_n + 1
feature_importance = pd.concat([feature_importance, fold_importance], axis=0)
print('Train loss mean: {0:.6f}, std: {1:.6f}.'.format(np.mean(train_loss), np.std(train_loss)))
print('CV mean score: {0:.6f}, std: {1:.6f}.'.format(np.mean(scores), np.std(scores)))
result_dict['oof'] = oof
result_dict['scores'] = scores
result_dict['models'] = models
if model_type == 'lgb':
if plot_feature_importance:
feature_importance["importance"] /= folds.n_splits
cols = feature_importance[["feature", "importance"]].groupby("feature").mean().sort_values(
by="importance", ascending=False)[:50].index
best_features = feature_importance.loc[feature_importance.feature.isin(cols)]
plt.figure(figsize=(16, 12));
sns.barplot(x="importance", y="feature", data=best_features.sort_values(by="importance", ascending=False));
plt.title('LGB Features (avg over folds)');
result_dict['feature_importance'] = feature_importance
return result_dict
def predict(df, models, model_type = 'lgb'):
prediction = np.zeros(len(df))
for model in models:
if model_type == 'lgb':
pred = model.predict_proba(df)[:, 1]
if model_type == 'xgb':
pred = model.predict(xgb.DMatrix(df, feature_names=df.columns), ntree_limit=model.best_ntree_limit)
if model_type == 'cat':
pred = model.predict_proba(df)[:,1]
prediction += pred/len(models)
return prediction
class train_config:
def __init__(self, n_splits, features, model_type, model_params, eval_metric, early_stopping_rounds, n_estimators,
save_oof, seed):
self.n_splits = n_splits
self.features = features
self.model_type = model_type
self.model_params = model_params
self.eval_metric = eval_metric
self.early_stopping_rounds = early_stopping_rounds
self.n_estimators = n_estimators
self.save_oof = save_oof
self.seed = seed
def model_train(df_train, train_config):
n_splits = train_config.n_splits
seed = train_config.seed
folds = KFold(n_splits, shuffle = True, random_state = seed)
X_train = df_train[train_config.features]
y_train = df_train['TARGET']
weight = df_train['weight']
result_dict = train_model_classification(
X=X_train,
y=y_train,
params=train_config.model_params,
groups = None,
folds=folds, model_type=train_config.model_type, eval_metric=train_config.eval_metric,
plot_feature_importance=True,verbose=100, early_stopping_rounds=train_config.early_stopping_rounds,
n_estimators=train_config.n_estimators,weight = weight, seed = seed)
return result_dict
if __name__ == "__main__":
with open('./processed/train_processed.pickle', 'rb') as handle:
train = pickle.load(handle)
with open('./processed/test_processed.pickle', 'rb') as handle:
test = pickle.load(handle)
config_path = sys.argv[1]
with open(config_path) as json_file:
config = json.load(json_file)
t_config = train_config(
n_splits = config['n_splits'],
features = config['features'],
model_type = config['model_type'],
model_params = config['model_params'],
eval_metric = config['eval_metric'],
early_stopping_rounds = config['early_stopping_rounds'],
n_estimators = config['n_estimators'],
save_oof = config['save_oof'],
seed = config['seed'],
)
result_dict = model_train(train, t_config)
models = result_dict['models']
prediction = predict(test[t_config.features], models)
if t_config.save_oof == True:
train[f'oof_{t_config.model_type}_{t_config.seed}'] = result_dict['oof']
test[f'oof_{t_config.model_type}_{t_config.seed}'] = prediction
with open('./processed/train_processed.pickle', 'wb') as handle:
pickle.dump(train, handle, protocol = pickle.HIGHEST_PROTOCOL)
with open('./processed/test_processed.pickle', 'wb') as handle:
pickle.dump(test, handle, protocol = pickle.HIGHEST_PROTOCOL)
sample_submission = pd.read_csv('./input/sample_submission.csv')
sample_submission['TARGET'] = prediction
sample_submission.to_csv(f'./submissions/submission_{t_config.model_type}_{t_config.seed}.csv', index=False)