Skip to content

Latest commit

 

History

History
88 lines (64 loc) · 4.46 KB

README.md

File metadata and controls

88 lines (64 loc) · 4.46 KB

Python 3.6

[ECCV 2020] Semantic Line Detection Using Mirror Attention and Comparative Ranking and Matching

Dongkwon Jin, Jun-Tae Lee, and Chang-Su Kim

overview

Official implementation for "Semantic Line Detection Using Mirror Attention and Comparative Ranking and Matching" [paper] [supp] [video] [arxiv].

Source code for baseline method (SLNet) is available in here.

Also, more recent work can be found in here.

Video

Video

Requirements

  • PyTorch 1.3.1
  • CUDA 10.0
  • CuDNN 7.6.5
  • python 3.6

Installation

Create conda environment:

    $ conda create -n DRM python=3.6 anaconda
    $ conda activate DRM
    $ pip install opencv-python==3.4.2.16
    $ conda install pytorch==1.3.1 torchvision cudatoolkit=10.0 -c pytorch

Download repository:

    $ git clone https://github.com/dongkwonjin/Semantic-Line-DRM.git

Instruction

  1. Download the following datasets to root/. SEL and SEL_Hard are datasets for semantic line detection. Others are datasets for applications. We obtain the edge detection results in edge folder, by employing HED algorithm.
Dataset Custom Original path
SEL Download here
SEL_Hard Download
AVA landscape Download here
ICCV Download here
NYU Download here
SYM_Hard Download
  1. Download our model parameters to root/(task_folder_name)/ if you want to get the performance of the paper.
Task Model parameters
Semantic line detection Download
Dominant parallel line detection Download
Reflection symmetry axis detection Download
  1. Edit config.py. Please modify dataset_dir and paper_weight_dir. If you want to get the performance of the paper, please input run_mode to 'test_paper'.

  2. Run with

cd Semantic-Line-DRM-master/(task_folder_name)/(model_folder_name)/code/
python main.py

Reference

@Inproceedings{
    Jin2020DRM,
    title={Semantic Line Detection Using Mirror Attention and Comparative Ranking and Matching},
    author={Dongkwon Jin, Jun-Tae Lee, and Chang-Su Kim},
    booktitle={ECCV},
    year={2020}
}