comments | difficulty | edit_url | tags | |||
---|---|---|---|---|---|---|
true |
Medium |
|
According to Wikipedia's article: "The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970."
The board is made up of an m x n
grid of cells, where each cell has an initial state: live (represented by a 1
) or dead (represented by a 0
). Each cell interacts with its eight neighbors (horizontal, vertical, diagonal) using the following four rules (taken from the above Wikipedia article):
- Any live cell with fewer than two live neighbors dies as if caused by under-population.
- Any live cell with two or three live neighbors lives on to the next generation.
- Any live cell with more than three live neighbors dies, as if by over-population.
- Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.
The next state of the board is determined by applying the above rules simultaneously to every cell in the current state of the m x n
grid board
. In this process, births and deaths occur simultaneously.
Given the current state of the board
, update the board
to reflect its next state.
Note that you do not need to return anything.
Example 1:
Input: board = [[0,1,0],[0,0,1],[1,1,1],[0,0,0]] Output: [[0,0,0],[1,0,1],[0,1,1],[0,1,0]]
Example 2:
Input: board = [[1,1],[1,0]] Output: [[1,1],[1,1]]
Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 25
board[i][j]
is0
or1
.
Follow up:
- Could you solve it in-place? Remember that the board needs to be updated simultaneously: You cannot update some cells first and then use their updated values to update other cells.
- In this question, we represent the board using a 2D array. In principle, the board is infinite, which would cause problems when the active area encroaches upon the border of the array (i.e., live cells reach the border). How would you address these problems?
Let's define two new states. State
So we can traverse the entire board, for each grid, count the number of living neighbors around the grid, and use the variable
Finally, we traverse the board again, and update the grid with state
The time complexity is
class Solution:
def gameOfLife(self, board: List[List[int]]) -> None:
m, n = len(board), len(board[0])
for i in range(m):
for j in range(n):
live = -board[i][j]
for x in range(i - 1, i + 2):
for y in range(j - 1, j + 2):
if 0 <= x < m and 0 <= y < n and board[x][y] > 0:
live += 1
if board[i][j] and (live < 2 or live > 3):
board[i][j] = 2
if board[i][j] == 0 and live == 3:
board[i][j] = -1
for i in range(m):
for j in range(n):
if board[i][j] == 2:
board[i][j] = 0
elif board[i][j] == -1:
board[i][j] = 1
class Solution {
public void gameOfLife(int[][] board) {
int m = board.length, n = board[0].length;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int live = -board[i][j];
for (int x = i - 1; x <= i + 1; ++x) {
for (int y = j - 1; y <= j + 1; ++y) {
if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] > 0) {
++live;
}
}
}
if (board[i][j] == 1 && (live < 2 || live > 3)) {
board[i][j] = 2;
}
if (board[i][j] == 0 && live == 3) {
board[i][j] = -1;
}
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (board[i][j] == 2) {
board[i][j] = 0;
} else if (board[i][j] == -1) {
board[i][j] = 1;
}
}
}
}
}
class Solution {
public:
void gameOfLife(vector<vector<int>>& board) {
int m = board.size(), n = board[0].size();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int live = -board[i][j];
for (int x = i - 1; x <= i + 1; ++x) {
for (int y = j - 1; y <= j + 1; ++y) {
if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] > 0) {
++live;
}
}
}
if (board[i][j] == 1 && (live < 2 || live > 3)) {
board[i][j] = 2;
}
if (board[i][j] == 0 && live == 3) {
board[i][j] = -1;
}
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (board[i][j] == 2) {
board[i][j] = 0;
} else if (board[i][j] == -1) {
board[i][j] = 1;
}
}
}
}
};
func gameOfLife(board [][]int) {
m, n := len(board), len(board[0])
for i := 0; i < m; i++ {
for j, v := range board[i] {
live := -v
for x := i - 1; x <= i+1; x++ {
for y := j - 1; y <= j+1; y++ {
if x >= 0 && x < m && y >= 0 && y < n && board[x][y] > 0 {
live++
}
}
}
if v == 1 && (live < 2 || live > 3) {
board[i][j] = 2
}
if v == 0 && live == 3 {
board[i][j] = -1
}
}
}
for i := 0; i < m; i++ {
for j, v := range board[i] {
if v == 2 {
board[i][j] = 0
}
if v == -1 {
board[i][j] = 1
}
}
}
}
/**
Do not return anything, modify board in-place instead.
*/
function gameOfLife(board: number[][]): void {
const m = board.length;
const n = board[0].length;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
let live = -board[i][j];
for (let x = i - 1; x <= i + 1; ++x) {
for (let y = j - 1; y <= j + 1; ++y) {
if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] > 0) {
++live;
}
}
}
if (board[i][j] === 1 && (live < 2 || live > 3)) {
board[i][j] = 2;
}
if (board[i][j] === 0 && live === 3) {
board[i][j] = -1;
}
}
}
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (board[i][j] === 2) {
board[i][j] = 0;
}
if (board[i][j] === -1) {
board[i][j] = 1;
}
}
}
}
const DIR: [(i32, i32); 8] = [
(-1, 0),
(1, 0),
(0, -1),
(0, 1),
(-1, -1),
(-1, 1),
(1, -1),
(1, 1),
];
impl Solution {
#[allow(dead_code)]
pub fn game_of_life(board: &mut Vec<Vec<i32>>) {
let n = board.len();
let m = board[0].len();
let mut weight_vec: Vec<Vec<i32>> = vec![vec![0; m]; n];
// Initialize the weight vector
for i in 0..n {
for j in 0..m {
if board[i][j] == 0 {
continue;
}
for (dx, dy) in DIR {
let x = (i as i32) + dx;
let y = (j as i32) + dy;
if Self::check_bounds(x, y, n as i32, m as i32) {
weight_vec[x as usize][y as usize] += 1;
}
}
}
}
// Update the board
for i in 0..n {
for j in 0..m {
if weight_vec[i][j] < 2 {
board[i][j] = 0;
} else if weight_vec[i][j] <= 3 {
if board[i][j] == 0 && weight_vec[i][j] == 3 {
board[i][j] = 1;
}
} else {
board[i][j] = 0;
}
}
}
}
#[allow(dead_code)]
fn check_bounds(i: i32, j: i32, n: i32, m: i32) -> bool {
i >= 0 && i < n && j >= 0 && j < m
}
}
public class Solution {
public void GameOfLife(int[][] board) {
int m = board.Length;
int n = board[0].Length;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int live = -board[i][j];
for (int x = i - 1; x <= i + 1; ++x) {
for (int y = j - 1; y <= j + 1; ++y) {
if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] > 0) {
++live;
}
}
}
if (board[i][j] == 1 && (live < 2 || live > 3)) {
board[i][j] = 2;
}
if (board[i][j] == 0 && live == 3) {
board[i][j] = -1;
}
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (board[i][j] == 2) {
board[i][j] = 0;
}
if (board[i][j] == -1) {
board[i][j] = 1;
}
}
}
}
}