Skip to content

Latest commit

 

History

History
257 lines (208 loc) · 7.13 KB

File metadata and controls

257 lines (208 loc) · 7.13 KB
comments difficulty edit_url tags
true
困难
深度优先搜索
动态规划
二叉树

English Version

题目描述

给定一个二叉树,我们在树的节点上安装摄像头。

节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。

计算监控树的所有节点所需的最小摄像头数量。

 

示例 1:

输入:[0,0,null,0,0]
输出:1
解释:如图所示,一台摄像头足以监控所有节点。

示例 2:

输入:[0,0,null,0,null,0,null,null,0]
输出:2
解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。


提示:

  1. 给定树的节点数的范围是 [1, 1000]
  2. 每个节点的值都是 0。

解法

方法一:动态规划(树形 DP)

对于每个节点,我们定义三种状态:

  • a:当前节点有摄像头
  • b:当前节点无摄像头,但被子节点监控
  • c:当前节点无摄像头,也没被子节点监控

接下来,我们设计一个函数 $dfs(root)$,它将返回一个长度为 3 的数组,表示以 root 为根的子树中,三种状态下的最小摄像头数量。那么答案就是 $\min(dfs(root)[0], dfs(root)[1])$

函数 $dfs(root)$ 的计算过程如下:

如果 root 为空,则返回 $[inf, 0, 0]$,其中 inf 表示一个很大的数,它用于表示不可能的情况。

否则,我们递归计算 root 的左右子树,分别得到 $[la, lb, lc]$$[ra, rb, rc]$

  • 如果当前节点有摄像头,那么它的左右节点必须都是被监控的状态,即 $a = \min(la, lb, lc) + \min(ra, rb, rc) + 1$
  • 如果当前节点无摄像头,但被子节点监控,那么子节点可以是其中之一或者两个都有摄像头,即 $b = \min(la + rb, lb + ra, la + ra)$
  • 如果当前节点无摄像头,也没被子节点监控,那么子节点必须被其子节点监控,即 $c = lb + rb$

最后,我们返回 $[a, b, c]$

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def minCameraCover(self, root: Optional[TreeNode]) -> int:
        def dfs(root):
            if root is None:
                return inf, 0, 0
            la, lb, lc = dfs(root.left)
            ra, rb, rc = dfs(root.right)
            a = min(la, lb, lc) + min(ra, rb, rc) + 1
            b = min(la + rb, lb + ra, la + ra)
            c = lb + rb
            return a, b, c

        a, b, _ = dfs(root)
        return min(a, b)

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int minCameraCover(TreeNode root) {
        int[] ans = dfs(root);
        return Math.min(ans[0], ans[1]);
    }

    private int[] dfs(TreeNode root) {
        if (root == null) {
            return new int[] {1 << 29, 0, 0};
        }
        var l = dfs(root.left);
        var r = dfs(root.right);
        int a = 1 + Math.min(Math.min(l[0], l[1]), l[2]) + Math.min(Math.min(r[0], r[1]), r[2]);
        int b = Math.min(Math.min(l[0] + r[1], l[1] + r[0]), l[0] + r[0]);
        int c = l[1] + r[1];
        return new int[] {a, b, c};
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
struct Status {
    int a, b, c;
};

class Solution {
public:
    int minCameraCover(TreeNode* root) {
        auto [a, b, _] = dfs(root);
        return min(a, b);
    }

    Status dfs(TreeNode* root) {
        if (!root) {
            return {1 << 29, 0, 0};
        }
        auto [la, lb, lc] = dfs(root->left);
        auto [ra, rb, rc] = dfs(root->right);
        int a = 1 + min({la, lb, lc}) + min({ra, rb, rc});
        int b = min({la + ra, la + rb, lb + ra});
        int c = lb + rb;
        return {a, b, c};
    };
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func minCameraCover(root *TreeNode) int {
	var dfs func(*TreeNode) (int, int, int)
	dfs = func(root *TreeNode) (int, int, int) {
		if root == nil {
			return 1 << 29, 0, 0
		}
		la, lb, lc := dfs(root.Left)
		ra, rb, rc := dfs(root.Right)
		a := 1 + min(la, min(lb, lc)) + min(ra, min(rb, rc))
		b := min(la+ra, min(la+rb, lb+ra))
		c := lb + rb
		return a, b, c
	}
	a, b, _ := dfs(root)
	return min(a, b)
}

TypeScript

/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function minCameraCover(root: TreeNode | null): number {
    const dfs = (root: TreeNode | null): number[] => {
        if (!root) {
            return [1 << 29, 0, 0];
        }
        const [la, lb, lc] = dfs(root.left);
        const [ra, rb, rc] = dfs(root.right);
        const a = 1 + Math.min(la, lb, lc) + Math.min(ra, rb, rc);
        const b = Math.min(la + ra, la + rb, lb + ra);
        const c = lb + rb;
        return [a, b, c];
    };
    const [a, b, _] = dfs(root);
    return Math.min(a, b);
}