Skip to content

Latest commit

 

History

History
501 lines (431 loc) · 15.3 KB

File metadata and controls

501 lines (431 loc) · 15.3 KB
comments difficulty edit_url rating source tags
true
困难
2395
第 236 场周赛 Q4
设计
队列
数据流
有序集合
堆(优先队列)

English Version

题目描述

给你两个整数 m 和 k ,以及数据流形式的若干整数。你需要实现一个数据结构,计算这个数据流的 MK 平均值 。

MK 平均值 按照如下步骤计算:

  1. 如果数据流中的整数少于 m 个,MK 平均值 为 -1 ,否则将数据流中最后 m 个元素拷贝到一个独立的容器中。
  2. 从这个容器中删除最小的 k 个数和最大的 k 个数。
  3. 计算剩余元素的平均值,并 向下取整到最近的整数 。

请你实现 MKAverage 类:

  • MKAverage(int m, int k) 用一个空的数据流和两个整数 m 和 k 初始化 MKAverage 对象。
  • void addElement(int num) 往数据流中插入一个新的元素 num 。
  • int calculateMKAverage() 对当前的数据流计算并返回 MK 平均数 ,结果需 向下取整到最近的整数

 

示例 1:

输入:
["MKAverage", "addElement", "addElement", "calculateMKAverage", "addElement", "calculateMKAverage", "addElement", "addElement", "addElement", "calculateMKAverage"]
[[3, 1], [3], [1], [], [10], [], [5], [5], [5], []]
输出:
[null, null, null, -1, null, 3, null, null, null, 5]

解释:
MKAverage obj = new MKAverage(3, 1); 
obj.addElement(3);        // 当前元素为 [3]
obj.addElement(1);        // 当前元素为 [3,1]
obj.calculateMKAverage(); // 返回 -1 ,因为 m = 3 ,但数据流中只有 2 个元素
obj.addElement(10);       // 当前元素为 [3,1,10]
obj.calculateMKAverage(); // 最后 3 个元素为 [3,1,10]
                          // 删除最小以及最大的 1 个元素后,容器为 [3]
                          // [3] 的平均值等于 3/1 = 3 ,故返回 3
obj.addElement(5);        // 当前元素为 [3,1,10,5]
obj.addElement(5);        // 当前元素为 [3,1,10,5,5]
obj.addElement(5);        // 当前元素为 [3,1,10,5,5,5]
obj.calculateMKAverage(); // 最后 3 个元素为 [5,5,5]
                          // 删除最小以及最大的 1 个元素后,容器为 [5]
                          // [5] 的平均值等于 5/1 = 5 ,故返回 5

 

提示:

  • 3 <= m <= 105
  • 1 <= k*2 < m
  • 1 <= num <= 105
  • addElement 与 calculateMKAverage 总操作次数不超过 105 次。

解法

方法一:有序集合 + 队列

我们可以维护以下数据结构或变量:

  • 一个长度为 $m$ 的队列 $q$,其中队首元素为最早加入的元素,队尾元素为最近加入的元素;
  • 三个有序集合,分别为 $lo$, $mid$, $hi$,其中 $lo$$hi$ 分别存储最小的 $k$ 个元素和最大的 $k$ 个元素,而 $mid$ 存储剩余的元素;
  • 一个变量 $s$,维护 $mid$ 中所有元素的和;
  • 部分编程语言(如 Java, Go)额外维护两个变量 $size1$$size3$,分别表示 $lo$$hi$ 中元素的个数。

调用 $addElement(num)$ 函数时,顺序执行以下操作:

  1. 如果 $lo$ 为空,或者 $num \leq max(lo)$,则将 $num$ 加入 $lo$ 中;否则如果 $hi$ 为空,或者 $num \geq min(hi)$,则将 $num$ 加入 $hi$ 中;否则将 $num$ 加入 $mid$ 中,同时将 $num$ 的值加到 $s$ 中。
  2. 接下来将 $num$ 加入队列 $q$ 中,如果此时队列 $q$ 的长度大于 $m$,则将队首元素 $x$ 从队列 $q$ 中移除,接下来从 $lo$, $mid$$hi$ 中选择其中一个包含 $x$ 的集合,将 $x$ 从该集合中移除,如果该集合为 $mid$,则将 $s$ 减去 $x$ 的值。
  3. 如果 $lo$ 的长度大于 $k$,则循环将 $lo$ 中的最大值 $max(lo)$$lo$ 中移除,将 $max(lo)$ 加入 $mid$ 中,同时将 $s$ 加上 $max(lo)$ 的值。
  4. 如果 $hi$ 的长度大于 $k$,则循环将 $hi$ 中的最小值 $min(hi)$$hi$ 中移除,将 $min(hi)$ 加入 $mid$ 中,同时将 $s$ 加上 $min(hi)$ 的值。
  5. 如果 $lo$ 的长度小于 $k$,并且 $mid$ 不为空,则循环将 $mid$ 中的最小值 $min(mid)$$mid$ 中移除,将 $min(mid)$ 加入 $lo$ 中,同时将 $s$ 减去 $min(mid)$ 的值。
  6. 如果 $hi$ 的长度小于 $k$,并且 $mid$ 不为空,则循环将 $mid$ 中的最大值 $max(mid)$$mid$ 中移除,将 $max(mid)$ 加入 $hi$ 中,同时将 $s$ 减去 $max(mid)$ 的值。

调用 $calculateMKAverage()$ 函数时,如果 $q$ 的长度小于 $m$,则返回 $-1$,否则返回 $\frac{s}{m - 2k}$

时间复杂度方面,每次调用 $addElement(num)$ 函数的时间复杂度为 $O(\log m)$,每次调用 $calculateMKAverage()$ 函数的时间复杂度为 $O(1)$。空间复杂度为 $O(m)$

Python3

class MKAverage:
    def __init__(self, m: int, k: int):
        self.m = m
        self.k = k
        self.s = 0
        self.q = deque()
        self.lo = SortedList()
        self.mid = SortedList()
        self.hi = SortedList()

    def addElement(self, num: int) -> None:
        if not self.lo or num <= self.lo[-1]:
            self.lo.add(num)
        elif not self.hi or num >= self.hi[0]:
            self.hi.add(num)
        else:
            self.mid.add(num)
            self.s += num
        self.q.append(num)
        if len(self.q) > self.m:
            x = self.q.popleft()
            if x in self.lo:
                self.lo.remove(x)
            elif x in self.hi:
                self.hi.remove(x)
            else:
                self.mid.remove(x)
                self.s -= x
        while len(self.lo) > self.k:
            x = self.lo.pop()
            self.mid.add(x)
            self.s += x
        while len(self.hi) > self.k:
            x = self.hi.pop(0)
            self.mid.add(x)
            self.s += x
        while len(self.lo) < self.k and self.mid:
            x = self.mid.pop(0)
            self.lo.add(x)
            self.s -= x
        while len(self.hi) < self.k and self.mid:
            x = self.mid.pop()
            self.hi.add(x)
            self.s -= x

    def calculateMKAverage(self) -> int:
        return -1 if len(self.q) < self.m else self.s // (self.m - 2 * self.k)


# Your MKAverage object will be instantiated and called as such:
# obj = MKAverage(m, k)
# obj.addElement(num)
# param_2 = obj.calculateMKAverage()

Java

class MKAverage {

    private int m, k;
    private long s;
    private int size1, size3;
    private Deque<Integer> q = new ArrayDeque<>();
    private TreeMap<Integer, Integer> lo = new TreeMap<>();
    private TreeMap<Integer, Integer> mid = new TreeMap<>();
    private TreeMap<Integer, Integer> hi = new TreeMap<>();

    public MKAverage(int m, int k) {
        this.m = m;
        this.k = k;
    }

    public void addElement(int num) {
        if (lo.isEmpty() || num <= lo.lastKey()) {
            lo.merge(num, 1, Integer::sum);
            ++size1;
        } else if (hi.isEmpty() || num >= hi.firstKey()) {
            hi.merge(num, 1, Integer::sum);
            ++size3;
        } else {
            mid.merge(num, 1, Integer::sum);
            s += num;
        }
        q.offer(num);
        if (q.size() > m) {
            int x = q.poll();
            if (lo.containsKey(x)) {
                if (lo.merge(x, -1, Integer::sum) == 0) {
                    lo.remove(x);
                }
                --size1;
            } else if (hi.containsKey(x)) {
                if (hi.merge(x, -1, Integer::sum) == 0) {
                    hi.remove(x);
                }
                --size3;
            } else {
                if (mid.merge(x, -1, Integer::sum) == 0) {
                    mid.remove(x);
                }
                s -= x;
            }
        }
        for (; size1 > k; --size1) {
            int x = lo.lastKey();
            if (lo.merge(x, -1, Integer::sum) == 0) {
                lo.remove(x);
            }
            mid.merge(x, 1, Integer::sum);
            s += x;
        }
        for (; size3 > k; --size3) {
            int x = hi.firstKey();
            if (hi.merge(x, -1, Integer::sum) == 0) {
                hi.remove(x);
            }
            mid.merge(x, 1, Integer::sum);
            s += x;
        }
        for (; size1 < k && !mid.isEmpty(); ++size1) {
            int x = mid.firstKey();
            if (mid.merge(x, -1, Integer::sum) == 0) {
                mid.remove(x);
            }
            s -= x;
            lo.merge(x, 1, Integer::sum);
        }
        for (; size3 < k && !mid.isEmpty(); ++size3) {
            int x = mid.lastKey();
            if (mid.merge(x, -1, Integer::sum) == 0) {
                mid.remove(x);
            }
            s -= x;
            hi.merge(x, 1, Integer::sum);
        }
    }

    public int calculateMKAverage() {
        return q.size() < m ? -1 : (int) (s / (q.size() - k * 2));
    }
}

/**
 * Your MKAverage object will be instantiated and called as such:
 * MKAverage obj = new MKAverage(m, k);
 * obj.addElement(num);
 * int param_2 = obj.calculateMKAverage();
 */

C++

class MKAverage {
public:
    MKAverage(int m, int k) {
        this->m = m;
        this->k = k;
    }

    void addElement(int num) {
        if (lo.empty() || num <= *lo.rbegin()) {
            lo.insert(num);
        } else if (hi.empty() || num >= *hi.begin()) {
            hi.insert(num);
        } else {
            mid.insert(num);
            s += num;
        }

        q.push(num);
        if (q.size() > m) {
            int x = q.front();
            q.pop();
            if (lo.find(x) != lo.end()) {
                lo.erase(lo.find(x));
            } else if (hi.find(x) != hi.end()) {
                hi.erase(hi.find(x));
            } else {
                mid.erase(mid.find(x));
                s -= x;
            }
        }
        while (lo.size() > k) {
            int x = *lo.rbegin();
            lo.erase(prev(lo.end()));
            mid.insert(x);
            s += x;
        }
        while (hi.size() > k) {
            int x = *hi.begin();
            hi.erase(hi.begin());
            mid.insert(x);
            s += x;
        }
        while (lo.size() < k && mid.size()) {
            int x = *mid.begin();
            mid.erase(mid.begin());
            s -= x;
            lo.insert(x);
        }
        while (hi.size() < k && mid.size()) {
            int x = *mid.rbegin();
            mid.erase(prev(mid.end()));
            s -= x;
            hi.insert(x);
        }
    }

    int calculateMKAverage() {
        return q.size() < m ? -1 : s / (q.size() - k * 2);
    }

private:
    int m, k;
    long long s = 0;
    queue<int> q;
    multiset<int> lo, mid, hi;
};

/**
 * Your MKAverage object will be instantiated and called as such:
 * MKAverage* obj = new MKAverage(m, k);
 * obj->addElement(num);
 * int param_2 = obj->calculateMKAverage();
 */

Go

type MKAverage struct {
	lo, mid, hi  *redblacktree.Tree
	q            []int
	m, k, s      int
	size1, size3 int
}

func Constructor(m int, k int) MKAverage {
	lo := redblacktree.NewWithIntComparator()
	mid := redblacktree.NewWithIntComparator()
	hi := redblacktree.NewWithIntComparator()
	return MKAverage{lo, mid, hi, []int{}, m, k, 0, 0, 0}
}

func (this *MKAverage) AddElement(num int) {
	merge := func(rbt *redblacktree.Tree, key, value int) {
		if v, ok := rbt.Get(key); ok {
			nxt := v.(int) + value
			if nxt == 0 {
				rbt.Remove(key)
			} else {
				rbt.Put(key, nxt)
			}
		} else {
			rbt.Put(key, value)
		}
	}

	if this.lo.Empty() || num <= this.lo.Right().Key.(int) {
		merge(this.lo, num, 1)
		this.size1++
	} else if this.hi.Empty() || num >= this.hi.Left().Key.(int) {
		merge(this.hi, num, 1)
		this.size3++
	} else {
		merge(this.mid, num, 1)
		this.s += num
	}
	this.q = append(this.q, num)
	if len(this.q) > this.m {
		x := this.q[0]
		this.q = this.q[1:]
		if _, ok := this.lo.Get(x); ok {
			merge(this.lo, x, -1)
			this.size1--
		} else if _, ok := this.hi.Get(x); ok {
			merge(this.hi, x, -1)
			this.size3--
		} else {
			merge(this.mid, x, -1)
			this.s -= x
		}
	}
	for ; this.size1 > this.k; this.size1-- {
		x := this.lo.Right().Key.(int)
		merge(this.lo, x, -1)
		merge(this.mid, x, 1)
		this.s += x
	}
	for ; this.size3 > this.k; this.size3-- {
		x := this.hi.Left().Key.(int)
		merge(this.hi, x, -1)
		merge(this.mid, x, 1)
		this.s += x
	}
	for ; this.size1 < this.k && !this.mid.Empty(); this.size1++ {
		x := this.mid.Left().Key.(int)
		merge(this.mid, x, -1)
		this.s -= x
		merge(this.lo, x, 1)
	}
	for ; this.size3 < this.k && !this.mid.Empty(); this.size3++ {
		x := this.mid.Right().Key.(int)
		merge(this.mid, x, -1)
		this.s -= x
		merge(this.hi, x, 1)
	}
}

func (this *MKAverage) CalculateMKAverage() int {
	if len(this.q) < this.m {
		return -1
	}
	return this.s / (this.m - 2*this.k)
}

/**
 * Your MKAverage object will be instantiated and called as such:
 * obj := Constructor(m, k);
 * obj.AddElement(num);
 * param_2 := obj.CalculateMKAverage();
 */

方法二

Python3

class MKAverage:
    def __init__(self, m: int, k: int):
        self.m = m
        self.k = k
        self.sl = SortedList()
        self.q = deque()
        self.s = 0

    def addElement(self, num: int) -> None:
        self.q.append(num)
        if len(self.q) == self.m:
            self.sl = SortedList(self.q)
            self.s = sum(self.sl[self.k : -self.k])
        elif len(self.q) > self.m:
            i = self.sl.bisect_left(num)
            if i < self.k:
                self.s += self.sl[self.k - 1]
            elif self.k <= i <= self.m - self.k:
                self.s += num
            else:
                self.s += self.sl[self.m - self.k]
            self.sl.add(num)

            x = self.q.popleft()
            i = self.sl.bisect_left(x)
            if i < self.k:
                self.s -= self.sl[self.k]
            elif self.k <= i <= self.m - self.k:
                self.s -= x
            else:
                self.s -= self.sl[self.m - self.k]
            self.sl.remove(x)

    def calculateMKAverage(self) -> int:
        return -1 if len(self.sl) < self.m else self.s // (self.m - self.k * 2)


# Your MKAverage object will be instantiated and called as such:
# obj = MKAverage(m, k)
# obj.addElement(num)
# param_2 = obj.calculateMKAverage()