comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Hard |
2105 |
Biweekly Contest 74 Q4 |
|
You are given a 0-indexed binary string floor
, which represents the colors of tiles on a floor:
floor[i] = '0'
denotes that theith
tile of the floor is colored black.- On the other hand,
floor[i] = '1'
denotes that theith
tile of the floor is colored white.
You are also given numCarpets
and carpetLen
. You have numCarpets
black carpets, each of length carpetLen
tiles. Cover the tiles with the given carpets such that the number of white tiles still visible is minimum. Carpets may overlap one another.
Return the minimum number of white tiles still visible.
Example 1:
Input: floor = "10110101", numCarpets = 2, carpetLen = 2 Output: 2 Explanation: The figure above shows one way of covering the tiles with the carpets such that only 2 white tiles are visible. No other way of covering the tiles with the carpets can leave less than 2 white tiles visible.
Example 2:
Input: floor = "11111", numCarpets = 2, carpetLen = 3 Output: 0 Explanation: The figure above shows one way of covering the tiles with the carpets such that no white tiles are visible. Note that the carpets are able to overlap one another.
Constraints:
1 <= carpetLen <= floor.length <= 1000
floor[i]
is either'0'
or'1'
.1 <= numCarpets <= 1000
Design a function
For index
- If
$i \ge n$ , it means that all bricks have been covered, return$0$ ; - If
$floor[i] = 0$ , there is no need to use a carpet, just skip it, that is,$dfs(i, j) = dfs(i + 1, j)$ ; - If
$j = 0$ , we can directly calculate the number of remaining white bricks that have not been covered using the prefix sum array$s$ , that is,$dfs(i, j) = s[n] - s[i]$ ; - If
$floor[i] = 1$ , we can choose to use a carpet to cover it, or choose not to use a carpet to cover it, and take the minimum of the two, that is,$dfs(i, j) = min(dfs(i + 1, j), dfs(i + carpetLen, j - 1))$ .
Use memoization search.
The time complexity is
class Solution:
def minimumWhiteTiles(self, floor: str, numCarpets: int, carpetLen: int) -> int:
@cache
def dfs(i, j):
if i >= n:
return 0
if floor[i] == '0':
return dfs(i + 1, j)
if j == 0:
return s[-1] - s[i]
return min(1 + dfs(i + 1, j), dfs(i + carpetLen, j - 1))
n = len(floor)
s = [0] * (n + 1)
for i, c in enumerate(floor):
s[i + 1] = s[i] + int(c == '1')
ans = dfs(0, numCarpets)
dfs.cache_clear()
return ans
class Solution {
private int[][] f;
private int[] s;
private int n;
private int k;
public int minimumWhiteTiles(String floor, int numCarpets, int carpetLen) {
n = floor.length();
f = new int[n][numCarpets + 1];
for (var e : f) {
Arrays.fill(e, -1);
}
s = new int[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + (floor.charAt(i) == '1' ? 1 : 0);
}
k = carpetLen;
return dfs(0, numCarpets);
}
private int dfs(int i, int j) {
if (i >= n) {
return 0;
}
if (j == 0) {
return s[n] - s[i];
}
if (f[i][j] != -1) {
return f[i][j];
}
if (s[i + 1] == s[i]) {
return dfs(i + 1, j);
}
int ans = Math.min(1 + dfs(i + 1, j), dfs(i + k, j - 1));
f[i][j] = ans;
return ans;
}
}
class Solution {
public:
int minimumWhiteTiles(string floor, int numCarpets, int carpetLen) {
int n = floor.size();
vector<vector<int>> f(n, vector<int>(numCarpets + 1, -1));
vector<int> s(n + 1);
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + (floor[i] == '1');
}
function<int(int, int)> dfs;
dfs = [&](int i, int j) {
if (i >= n) return 0;
if (j == 0) return s[n] - s[i];
if (f[i][j] != -1) return f[i][j];
if (s[i + 1] == s[i]) return dfs(i + 1, j);
int ans = min(1 + dfs(i + 1, j), dfs(i + carpetLen, j - 1));
f[i][j] = ans;
return ans;
};
return dfs(0, numCarpets);
}
};
func minimumWhiteTiles(floor string, numCarpets int, carpetLen int) int {
n := len(floor)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, numCarpets+1)
for j := range f[i] {
f[i][j] = -1
}
}
s := make([]int, n+1)
for i, c := range floor {
s[i+1] = s[i] + int(c-'0')
}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i >= n {
return 0
}
if j == 0 {
return s[n] - s[i]
}
if f[i][j] != -1 {
return f[i][j]
}
if s[i+1] == s[i] {
return dfs(i+1, j)
}
ans := min(1+dfs(i+1, j), dfs(i+carpetLen, j-1))
f[i][j] = ans
return ans
}
return dfs(0, numCarpets)
}