Skip to content

Latest commit

 

History

History
190 lines (154 loc) · 5.12 KB

File metadata and controls

190 lines (154 loc) · 5.12 KB
comments difficulty edit_url rating source tags
true
Medium
1392
Biweekly Contest 114 Q2
Greedy
Array
Hash Table
Counting

中文文档

Description

You are given a 0-indexed array nums consisting of positive integers.

There are two types of operations that you can apply on the array any number of times:

  • Choose two elements with equal values and delete them from the array.
  • Choose three elements with equal values and delete them from the array.

Return the minimum number of operations required to make the array empty, or -1 if it is not possible.

 

Example 1:

Input: nums = [2,3,3,2,2,4,2,3,4]
Output: 4
Explanation: We can apply the following operations to make the array empty:
- Apply the first operation on the elements at indices 0 and 3. The resulting array is nums = [3,3,2,4,2,3,4].
- Apply the first operation on the elements at indices 2 and 4. The resulting array is nums = [3,3,4,3,4].
- Apply the second operation on the elements at indices 0, 1, and 3. The resulting array is nums = [4,4].
- Apply the first operation on the elements at indices 0 and 1. The resulting array is nums = [].
It can be shown that we cannot make the array empty in less than 4 operations.

Example 2:

Input: nums = [2,1,2,2,3,3]
Output: -1
Explanation: It is impossible to empty the array.

 

Constraints:

  • 2 <= nums.length <= 105
  • 1 <= nums[i] <= 106

 

Note: This question is the same as 2244: Minimum Rounds to Complete All Tasks.

Solutions

Solution 1: Hash Table + Greedy

We use a hash table $count$ to count the number of occurrences of each element in the array. Then we traverse the hash table. For each element $x$, if it appears $c$ times, we can perform $\lfloor \frac{c+2}{3} \rfloor$ operations to delete $x$. Finally, we return the sum of the number of operations for all elements.

The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(n)$.

Python3

class Solution:
    def minOperations(self, nums: List[int]) -> int:
        count = Counter(nums)
        ans = 0
        for c in count.values():
            if c == 1:
                return -1
            ans += (c + 2) // 3
        return ans

Java

class Solution {
    public int minOperations(int[] nums) {
        Map<Integer, Integer> count = new HashMap<>();
        for (int num : nums) {
            // count.put(num, count.getOrDefault(num, 0) + 1);
            count.merge(num, 1, Integer::sum);
        }
        int ans = 0;
        for (int c : count.values()) {
            if (c < 2) {
                return -1;
            }
            int r = c % 3;
            int d = c / 3;
            switch (r) {
                case (0) -> {
                    ans += d;
                }
                default -> {
                    ans += d + 1;
                }
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int minOperations(vector<int>& nums) {
        unordered_map<int, int> count;
        for (int num : nums) {
            ++count[num];
        }
        int ans = 0;
        for (auto& [_, c] : count) {
            if (c < 2) {
                return -1;
            }
            ans += (c + 2) / 3;
        }
        return ans;
    }
};

Go

func minOperations(nums []int) (ans int) {
	count := map[int]int{}
	for _, num := range nums {
		count[num]++
	}
	for _, c := range count {
		if c < 2 {
			return -1
		}
		ans += (c + 2) / 3
	}
	return
}

TypeScript

function minOperations(nums: number[]): number {
    const count: Map<number, number> = new Map();
    for (const num of nums) {
        count.set(num, (count.get(num) ?? 0) + 1);
    }
    let ans = 0;
    for (const [_, c] of count) {
        if (c < 2) {
            return -1;
        }
        ans += ((c + 2) / 3) | 0;
    }
    return ans;
}