-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_segmentation.py
107 lines (77 loc) · 2.83 KB
/
img_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# coding:utf8
import sys
import cv2
import numpy as np
def preprocess(gray):
# 1. Sobel算子,x方向求梯度
sobel = cv2.Sobel(gray, cv2.CV_8U, 1, 0, ksize = 3)
# 2. 二值化
ret, binary = cv2.threshold(sobel, 0, 255, cv2.THRESH_OTSU+cv2.THRESH_BINARY)
# 3. 膨胀和腐蚀操作的核函数
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 9))
element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (24, 6))
# 4. 膨胀一次,让轮廓突出
dilation = cv2.dilate(binary, element2, iterations = 1)
# 5. 腐蚀一次,去掉细节,如表格线等。注意这里去掉的是竖直的线
erosion = cv2.erode(dilation, element1, iterations = 1)
# 6. 再次膨胀,让轮廓明显一些
dilation2 = cv2.dilate(erosion, element2, iterations = 3)
# 7. 存储中间图片
cv2.imwrite("binary.png", binary)
cv2.imwrite("dilation.png", dilation)
cv2.imwrite("erosion.png", erosion)
cv2.imwrite("dilation2.png", dilation2)
return dilation2
def findTextRegion(img):
region = []
# 1. 查找轮廓
_, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 2. 筛选那些面积小的
for i in range(len(contours)):
cnt = contours[i]
# 计算该轮廓的面积
area = cv2.contourArea(cnt)
# 面积小的都筛选掉
if(area < 1000):
continue
# 轮廓近似,作用很小
epsilon = 0.001 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
# 找到最小的矩形,该矩形可能有方向
rect = cv2.minAreaRect(cnt)
print "rect is: "
print rect
# box是四个点的坐标
box = cv2.cv.BoxPoints(rect)
box = np.int0(box)
# 计算高和宽
height = abs(box[0][1] - box[2][1])
width = abs(box[0][0] - box[2][0])
# 筛选那些太细的矩形,留下扁的
if(height > width * 1.2):
continue
region.append(box)
return region
def detect(img):
# 1. 转化成灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 2. 形态学变换的预处理,得到可以查找矩形的图片
dilation = preprocess(gray)
# 3. 查找和筛选文字区域
region = findTextRegion(dilation)
# 4. 用绿线画出这些找到的轮廓
for box in region:
cv2.drawContours(img, [box], 0, (0, 255, 0), 2)
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.imshow("img", img)
# 带轮廓的图片
cv2.imwrite("contours.png", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
# 读取文件
# imagePath = sys.argv[1]
# img = cv2.imread(imagePath)
img_path = '/home/moma/Intern_Record/814225.jpg'
img = cv2.imread(img_path)
detect(img)