-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathretriever_ft.py
257 lines (209 loc) · 11.9 KB
/
retriever_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import torch
import time
import logging
import numpy as np
import os
import copy
from torch.distributed import get_rank, get_world_size
from collections import OrderedDict
from dialogpt.gpt2_training.eval_utils import eval_model_loss, eval_model_loss_joint_training, retrieve_top_docs, compare_models
from dialogpt.gpt2_training.train_utils import RedditExample
from dialogpt.data_loader import convert_examples_to_features_dynamic
from dialogpt.gpt2_training.train_utils import load_model, boolean_string, set_lr, get_eval_list_same_length
from dialogpt.gpt2_training.distributed import all_reduce_and_rescale_tensors, all_gather_list
from extract_top_docs import init_retriever, init_retriever_single_rank
from dpr.utils.model_utils import CheckpointState
logger = logging.getLogger(__name__)
def generate_str_vectors(encoder, tensorizer, questions, device, bsz=1):
n = len(questions)
query_vectors = []
for j, batch_start in enumerate(range(0, n, bsz)):
batch_token_tensors = [tensorizer.text_to_tensor(q) for q in
questions[batch_start:batch_start + bsz]]
q_ids_batch = torch.stack(batch_token_tensors, dim=0).cuda()
q_seg_batch = torch.zeros_like(q_ids_batch).cuda()
q_attn_mask = tensorizer.get_attn_mask(q_ids_batch)
q_ids_batch.to(device)
q_seg_batch.to(device)
q_attn_mask.to(device)
_, out, _ = encoder(q_ids_batch, q_seg_batch, q_attn_mask)
query_vectors.extend(out.cpu().split(1, dim=0))
if len(query_vectors) % 100 == 0:
logger.info('Encoded queries %d', len(query_vectors))
query_tensor = torch.cat(query_vectors, dim=0).to(device)
assert query_tensor.size(0) == len(questions)
return query_tensor
def retriever_finetune(args, batch, eval_dataloader_loss, global_step, EPS, device, step, n_gpu,
enc, retriever_last, generator_model, retriever_model,
optimizer, tensorizer, all_passages,
config, epoch, pbar, train_logger, eval_logger, output_dir, stats ,experiment=None):
generator_model.eval()
retriever_model.train()
step -= 1
(tr_loss, tr_ppl, mean_ppl, nb_tr_examples, nb_tr_steps) = stats['tr_loss'], stats['tr_ppl'], stats['mean_ppl'], stats['nb_tr_examples'], stats['nb_tr_steps']
tr_dot_product, tr_reward = stats['tr_dot_product'], stats['tr_reward']
n_token_real, n_token_total = stats['n_token_real'], stats['n_token_total']
train_start_time_epoch = time.time()
ret_time, gen_time = stats['ret_time'], stats['gen_time']
if (global_step) % args.valid_step == 0:
retriever_model.eval()
if global_step != 0:
if hasattr(retriever_model, 'module'):
retriever_last, all_passages = init_retriever(args, eval_on_each=args.eval_on_each,
encoder=copy.deepcopy(retriever_model.module.question_model), tensorizer=tensorizer,
force_index=True, file_suffix = args.file_suffix)
else:
retriever_last, all_passages = init_retriever(args, eval_on_each=args.eval_on_each,
encoder=copy.deepcopy(retriever_model.question_model), tensorizer=tensorizer,
force_index=True, file_suffix = args.file_suffix)
if args.local_rank == -1 or get_rank() == 0:
state_dict = {k.replace('module.',''): (v.cpu() if v is not None else None)
for k, v in retriever_model.state_dict().items()}
torch.save(OrderedDict([('model_dict', state_dict),
('optimizer_dict', None),
('scheduler_dict', None),
('offset', None),
('epoch', None),
('encoder_params', None)]),
os.path.join(output_dir,
f'retriever-pretrain-step-{global_step}.pkl'))
eval_loss, eval_ppl, eval_reward = eval_model_loss_joint_training(
generator_model, retriever_last, all_passages, enc, eval_dataloader_loss, epoch, args)
print('r step:{},eval_loss:{},eval_ppl:{},eval_reward:{}'.format(global_step+1, eval_loss, eval_ppl, eval_reward), flush=True)
print('R,{},{},{},{},{},{}'.format(
epoch+1, global_step+1, step+1, eval_loss, eval_ppl, eval_reward),
file=eval_logger, flush=True)
if experiment is not None:
experiment.log_metrics({
'epoch_ret': epoch + 1,
'global_step_ret': global_step + 1,
'step_ret': step + 1,
'eval_loss_ret': eval_loss,
'eval_ppl_ret': eval_ppl,
'eval_reward_ret': eval_reward
})
logger.info('current learning rate: '
+ str(optimizer.param_groups[0]['lr']))
if hasattr(retriever_model, 'module') and n_gpu>1:
torch.distributed.barrier()
retriever_model.train()
seq_len = batch[0].shape[1]
batch = tuple(t.to(args.device) for t in batch)
input_ids, position_ids, token_ids, label_ids, *_ = batch
ret_start_time = time.time()
SUMMATION_RANGE = 1
with torch.no_grad():
args.n_docs *= SUMMATION_RANGE
ret_passages, ret_scores, cxt_str, rsp_str = retrieve_top_docs(input_ids, enc, retriever_last, all_passages, args)
args.n_docs = int(args.n_docs / SUMMATION_RANGE)
ret_end_time = time.time()
loss_ret_topK = []
all_example = []
for t in range(args.n_docs * SUMMATION_RANGE):
doc_lines = [' '.join(doc.strip().split()) for doc in ret_passages[t]]
examples = [RedditExample(i, doc_line, src_line, tgt_line) for i, (doc_line, src_line, tgt_line) in
enumerate(zip(doc_lines, cxt_str, rsp_str))]
features = convert_examples_to_features_dynamic(examples, enc,
args.max_seq_length)
batch_ret = eval_dataloader_loss._batch_feature(features)
batch_ret = tuple(t.to(args.device) for t in batch_ret)
input_ids_ret, position_ids_ret, token_ids_ret, label_ids_ret, *_ = batch_ret
loss_ret, _ = generator_model.forward_pointwise(input_ids_ret, position_ids_ret, token_ids_ret,
label_ids_ret)
loss_ret_topK.append(loss_ret)
all_example.extend(examples)
coeff = torch.exp(-torch.stack(loss_ret_topK))
if hasattr(retriever_model, 'module'):
query_vector = generate_str_vectors(retriever_model.module.question_model, tensorizer, cxt_str, args.device)
psg_vector = torch.stack([generate_str_vectors(retriever_model.module.ctx_model, tensorizer,
[ret_passages[i][j] for i in range(args.n_docs)], args.device)
for j in range(len(ret_passages[0]))])
else:
query_vector = generate_str_vectors(retriever_model.question_model, tensorizer, cxt_str, args.device, args.train_batch_size)
psg_vector = torch.stack([generate_str_vectors(retriever_model.ctx_model, tensorizer,
[ret_passages[i][j] for i in range(args.n_docs)], args.device, args.train_batch_size)
for j in range(len(ret_passages[0]))])
mapping_dim = psg_vector.shape[-1]
dot_product = torch.stack([torch.mv(psg_vector[i], query_vector[i]) for i in range(len(query_vector))], dim=1)
with torch.no_grad():
d_scores = dot_product + EPS
d_scores = d_scores - torch.mean(d_scores, axis=0)
normalized_score = torch.softmax(d_scores.to(device), dim=0)
if args.rl_method == "simple":
reward = coeff
reward = reward - torch.mean(reward, 0)
logpz_x = torch.log_softmax(dot_product, dim = 0)
loss = -logpz_x * normalized_score* reward
else:
raise NotImplementedError('rl method cannot be ' + args.rl_method)
loss = loss.sum(0).mean()
dot_product = dot_product.sum(0).mean()
reward = reward.sum(0).mean()
if n_gpu > 1:
loss = loss.mean()
dot_product = dot_product.mean()
reward = reward.mean()
if args.fp16:
from apex import amp
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), max_norm=1.0)
else:
loss.backward()
tr_loss += float(loss.item()) * (args.train_batch_size / input_ids.shape[0])
tr_dot_product += float(dot_product.item()) * (args.train_batch_size / input_ids.shape[0])
tr_reward += torch.exp(-torch.stack(loss_ret_topK)).mean().item() * input_ids.size(0)
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
mean_loss = tr_loss / nb_tr_steps
mean_dot_product = tr_dot_product / nb_tr_steps
mean_reward = tr_reward / nb_tr_steps
n_token_total += input_ids.shape[0] * input_ids.shape[1]
n_token_real += (input_ids != 0).sum().item()
gen_end_time = time.time()
ret_time += (ret_end_time - ret_start_time)
gen_time += (gen_end_time - ret_end_time)
step += 1
if step % args.gradient_accumulation_steps == 0:
global_step -= 1
set_lr(optimizer, global_step,
args.lr_schedule, args.learning_rate,
args.warmup_steps, args.warmup_proportion,
config.n_embd, args.num_optim_steps)
if args.local_rank != -1:
grads = [p.grad.data for p in retriever_model.parameters()
if p.requires_grad and p.grad is not None]
all_reduce_and_rescale_tensors(grads, float(1))
optimizer.step()
global_step += 1
retriever_model.zero_grad()
if args.local_rank != -1:
mean_loss = sum(all_gather_list(mean_loss)) / get_world_size()
mean_dot_product = sum(all_gather_list(mean_dot_product)) / get_world_size()
mean_reward = sum(all_gather_list(mean_reward)) / get_world_size()
mean_ppl = sum(all_gather_list(mean_ppl)) / get_world_size()
n_token_real_all_proc = sum(all_gather_list(n_token_real))
n_token_total_all_proc = sum(all_gather_list(n_token_total))
else:
n_token_real_all_proc = n_token_real
n_token_total_all_proc = n_token_total
if args.local_rank == -1 or get_rank() == 0:
epoch_time = time.time() - train_start_time_epoch
if pbar is not None:
pbar.set_postfix_str(
f"tok/s: {n_token_real_all_proc // epoch_time // 1000}k "
f"ppl: {mean_ppl:.2f} loss:{mean_loss:.2f} epoch: {epoch}")
pbar.update(1)
print('Epoch:{}, Retrival step:{},loss:{:.3f},ppl:{:.3f},ret_time:{:.3f},gen_time:{:.3f},reward:{:.3f},dot_prod:{:.3f}'.format(epoch + 1, global_step + 1, mean_loss, mean_ppl, ret_time, gen_time, mean_reward, mean_dot_product), flush=True)
print('R,{},{},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f}'.format(
epoch + 1, global_step + 1, mean_loss, mean_ppl, ret_time, gen_time, mean_reward, mean_dot_product),
file=train_logger, flush=True)
ret_time, gen_time = 0.0, 0.0
generator_model.train()
stats['tr_loss'], stats['tr_ppl'], stats['mean_ppl'], stats['nb_tr_examples'], stats['nb_tr_steps'] = (tr_loss, tr_ppl, mean_ppl, nb_tr_examples, nb_tr_steps)
stats['tr_dot_product'], stats['tr_reward'] = tr_dot_product, tr_reward
stats['n_token_real'], stats['n_token_total'] = n_token_real, n_token_total
stats['ret_time'], stats['gen_time'] = ret_time, gen_time
return stats