-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
372 lines (343 loc) · 19.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import math
from pathlib import Path
import torch
import numpy as np
import argparse
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import cv2
import h5py
from tqdm import tqdm
from model import U_GAN, Discriminator, FusionModel, DDcGAN
from logger import getLogger
from torch.utils.tensorboard import SummaryWriter
from loss import gradient_loss, l2_norm, mse_loss, ssim_loss, vgg_loss
from utils import str2bool
#
# with h5py.File(str(self.checkpoint_path), "w") as hf:
# hf.create_dataset('data', data=sub_img)
# hf.create_dataset('label', data=sub_label)
class imgDataset(Dataset):
global args
global mylogger
def __init__(self, is_train=True, transform=True, path="./Train_ir"):
super(imgDataset, self).__init__()
self.data_dir = None
self.is_train = is_train
self.transform = transform
if args.do_patch:
(Path(args.data_dir) / "patch" / path).mkdir(exist_ok=True, parents=True)
if self.transform:
self.trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
if self.is_train:
self.data_dir = str(Path(args.data_dir) / "patch" / path / f"train_{args.label_size}.h5")
if not args.override_data and Path(self.data_dir).exists():
mylogger.info(f"训练|已经存在训练集的h5文件,直接读取")
else:
self.patch_img(path)
with h5py.File(self.data_dir, 'r') as hf:
self.img = np.array(hf.get('data'))
self.label = np.array(hf.get('label'))
else:
self.img_path = path
self.data_dir = str(Path(args.data_dir) / "patch" / path / f"test_{args.label_size}.h5")
if not args.override_data and Path(self.data_dir).exists():
mylogger.info(f"测试|已经存在测试集的h5文件,直接读取")
else:
total_img = list(Path(path).glob("*.bmp"))
total_img.extend(Path(path).glob("*.jpg"))
total_img.extend(Path(path).glob("*.png"))
total_img.extend(Path(path).glob("*.tif"))
total_img.sort(key=lambda x: int(x.stem))
self.patch_img(total_img)
patch_gen = self._patch(total_img)
pbar = tqdm(patch_gen)
for idx, patch_data in enumerate(pbar):
pbar.set_description(f"测试|第{idx + 1}张图片做切分")
sub_img, sub_label = patch_data
if idx == 0:
with h5py.File(self.data_dir, "w", chunks=True, maxshape=(None,)) as hf:
hf.create_dataset('data', data=sub_img,
maxshape=(None, sub_img.shape[1], sub_img.shape[2], sub_img.shape[3]),
chunks=True)
hf.create_dataset('label', data=sub_label, maxshape=(
None, sub_label.shape[1], sub_label.shape[2], sub_label.shape[3]),
chunks=True)
else:
with h5py.File(self.data_dir, "a") as hf:
img = hf.get("data")
label = hf.get("label")
img.resize(img.shape[0] + sub_img.shape[0], axis=0)
label.resize(label.shape[0] + sub_label.shape[0], axis=0)
img[-sub_img.shape[0]:] = sub_img
label[-sub_label.shape[0]:] = sub_label
with h5py.File(self.data_dir, 'r') as hf:
self.img = np.array(hf.get('data'))
self.label = np.array(hf.get('label'))
else:
(Path(args.data_dir) / path).mkdir(exist_ok=True, parents=True)
self.img_trans = transforms.Compose(
[transforms.ToTensor(), transforms.Resize((args.patch_size, args.patch_size), antialias=True),
transforms.Normalize([0.5], [0.5])])
self.label_trans = transforms.Compose(
[transforms.ToTensor(), transforms.Resize((args.label_size, args.label_size), antialias=True),
transforms.Normalize([0.5], [0.5])])
total_img = list(Path(path).glob("*.bmp"))
total_img.extend(Path(path).glob("*.jpg"))
total_img.extend(Path(path).glob("*.png"))
total_img.extend(Path(path).glob("*.tif"))
total_img.sort(key=lambda x: int(x.stem))
self.img = total_img
def __len__(self):
return len(self.img)
def __getitem__(self, idx):
if args.do_patch:
img = self.img[idx]
label = self.label[idx]
if self.transform:
img = self.trans(img)
label = self.trans(label)
return img, label
else:
# padding = args.patch_size - args.label_size
label = cv2.imread(str(self.img[idx]), cv2.IMREAD_GRAYSCALE)
# img = np.pad(label, ((padding // 2, padding - padding // 2), (padding // 2, padding - padding // 2)),
# "constant", constant_values=(0, 0))
img = self.img_trans(label)
label = self.label_trans(label)
return img, label
def patch_img(self, img_path):
mylogger.info(f"训练|开始切分训练集" if args.is_train else f"测试|开始切分测试集")
total_img = list(Path(img_path).glob("*.bmp"))
total_img.extend(list(Path(img_path).glob("*.tif")))
total_img.extend(list(Path(img_path).glob("*.jpg")))
total_img.extend(list(Path(img_path).glob("*.png")))
total_img.sort(key=lambda x: int(x.stem))
patch_gen = self._patch(total_img)
pbar = tqdm(patch_gen)
for idx, patch_data in enumerate(pbar):
pbar.set_description(("训练" if args.is_train else "测试") + f"|第{idx + 1}张图片做切分")
sub_img, sub_label = patch_data
if idx == 0:
"""
先创建数据集
"""
with h5py.File(self.data_dir, "w") as hf:
hf.create_dataset('data', data=sub_img,
maxshape=(None, sub_img.shape[1], sub_img.shape[2], sub_img.shape[3]),
chunks=True)
hf.create_dataset('label', data=sub_label,
maxshape=(None, sub_label.shape[1], sub_label.shape[2], sub_label.shape[3]),
chunks=True)
else:
with h5py.File(self.data_dir, "a") as hf:
img = hf.get("data")
label = hf.get("label")
img.resize(img.shape[0] + sub_img.shape[0], axis=0)
label.resize(label.shape[0] + sub_label.shape[0], axis=0)
img[-sub_img.shape[0]:] = sub_img
label[-sub_label.shape[0]:] = sub_label
@staticmethod
def _patch(total_img):
if args.is_train:
padding = (args.patch_size - args.label_size) // 2
for index in range(len(total_img)):
sub_img = []
sub_label = []
[h, w] = cv2.imread(str(total_img[index]), cv2.IMREAD_GRAYSCALE).shape
for x in range(0, h - args.patch_size, args.stride_size):
for y in range(0, w - args.patch_size, args.stride_size):
patch_img = cv2.imread(str(total_img[index]), cv2.IMREAD_GRAYSCALE) # 读取整张图像
label = patch_img[x + padding:x + padding + args.label_size,
y + padding:y + padding + args.label_size]
label = label.reshape([args.label_size, args.label_size, 1])
patch = patch_img[x:x + args.patch_size, y:y + args.patch_size]
patch = patch.reshape([args.patch_size, args.patch_size, 1])
sub_img.append(patch)
sub_label.append(label)
# yield patch, label
sub_img = np.array(sub_img)
sub_label = np.array(sub_label)
yield sub_img, sub_label
else:
for index in range(len(total_img)):
label = cv2.imread(str(total_img[index]), cv2.IMREAD_GRAYSCALE)
label.resize([args.patch_size, args.patch_size])
padding = args.patch_size - args.label_size
# 将源图像做填充
img = np.pad(label,
((padding // 2, padding - padding // 2), (padding // 2, padding - padding // 2)),
"constant", constant_values=(127, 127))
img = np.reshape(img, [img.shape[0], img.shape[1], 1])
label = np.reshape(label, [label.shape[0], label.shape[1], 1])
# sub_img.append(img)
# sub_label.append(label)
# sub_img = np.array(sub_img)
# sub_label = np.array(sub_label)
yield [img], [label]
# yield sub_img, sub_label
def gradient(x):
# [[-1., 0., 1.], [-2., 0., 2.], [-1., 0., 1.]] sobel算子
# [[0., 1., 0.], [1., -4., 1.], [0., 1., 0.]] laplace算子
d = F.conv2d(x, torch.tensor([[0., 1., 0.], [1., -4., 1.], [0., 1., 0.]], device=device, ).unsqueeze(0).unsqueeze(
0), padding=1) # sobel算子
return d
def train(G, D, ir_dataloader, vi_dataloader):
global writer
epoch_G_loss = []
epoch_D_loss = []
if args.is_train:
G_optimizer = torch.optim.Adam(G.parameters(), lr=args.learning_rate)
D_optimizer = torch.optim.Adam(D.parameters(), lr=args.learning_rate)
for epoch in tqdm(range(args.epochs)):
mylogger.info(f"训练|开始训练第{epoch + 1}个epoch,一次epoch包含{len(ir_dataloader)}个batch")
for batch, ((ir_img, ir_label), (vi_img, vi_label)) in enumerate(zip(ir_dataloader, vi_dataloader)):
ir_img = ir_img.to(device)
ir_label = ir_label.to(device)
vi_img = vi_img.to(device)
vi_label = vi_label.to(device)
input_img = torch.cat([ir_img, vi_img], dim=1)
G_out = G(input_img)
D_out = D(G_out)
pos = D(vi_label)
batch_size = D_out.shape[0]
# 辨别器损失
# D_loss = torch.mean(
# torch.square(D_out - torch.rand([batch_size, 1], device=device) * 0.3)) + torch.mean(
# torch.square(pos - torch.rand([batch_size, 1], device=device) * 0.5 + 0.7))
b = torch.rand([batch_size, 1], device=device) * 0.5 + 0.7
a = torch.rand([batch_size, 1], device=device) * 0.3
D_loss = mse_loss(D_out, a) + mse_loss(pos, b)
D_loss.backward()
epoch_D_loss.append(D_loss.item())
D_optimizer.step()
D_optimizer.zero_grad()
if (batch + 1) % args.generator_interval == 0:
G_out = G(input_img)
D_out = D(G_out)
G_content_loss = l2_norm(G_out, ir_label) / G_out.numel() + 5 * l2_norm(gradient(G_out), gradient(
vi_label)) / G_out.numel()
# G_content_loss = torch.mean(
# torch.square(G_out - ir_label)) + 5 * torch.mean(
# torch.square(gradient(G_out) - gradient(vi_label)))
# G_adversarial_loss = torch.mean(
# torch.square(D_out - torch.rand([batch_size, 1], device=device) * 0.5 + 0.7))
c = torch.rand([batch_size, 1], device=device) * 0.5 + 0.7
G_adversarial_loss = mse_loss(D_out, c)
G_ssim_loss = ssim_loss(G_out, ir_label) + 5 * ssim_loss(G_out, vi_label)
style_transfer_loss = vgg_loss(vi_label, ir_label, G_out)
# 生成器损失
G_loss = G_adversarial_loss + 100 * G_content_loss + 300 * G_ssim_loss + 100 * style_transfer_loss
epoch_G_loss.append(G_loss.item())
G_loss.backward()
G_optimizer.step()
G_optimizer.zero_grad()
else:
continue
if (epoch + 1) % args.log_interval == 0:
mean_G_loss = np.mean(epoch_G_loss)
mean_D_loss = np.mean(epoch_D_loss)
mylogger.info(f"训练|第{epoch + 1}个epoch|G_loss:{mean_G_loss:>5f}|D_loss:{mean_D_loss:>5f}")
if args.do_patch:
writer.add_scalar(f"train/{G.__class__.__name__}/patch/G_loss", mean_G_loss, epoch + 1)
writer.add_scalar(f"train/{D.__class__.__name__}/patch/D_loss", mean_D_loss, epoch + 1)
G_dir_path = Path(args.checkpoint_dir).joinpath(f"{G.__class__.__name__}").joinpath(
"train_on_patch")
D_dir_path = Path(args.checkpoint_dir).joinpath(f"{G.__class__.__name__}").joinpath(
"train_on_patch")
G_dir_path.mkdir(exist_ok=True, parents=True)
D_dir_path.mkdir(exist_ok=True, parents=True)
G_dir_path = str(G_dir_path)
D_dir_path = str(D_dir_path)
else:
writer.add_scalar(f"train/{G.__class__.__name__}/G_loss", mean_G_loss, epoch + 1)
writer.add_scalar(f"train/{D.__class__.__name__}/D_loss", mean_D_loss, epoch + 1)
G_dir_path = f"{args.checkpoint_dir}/{G.__class__.__name__}"
D_dir_path = f"{args.checkpoint_dir}/{D.__class__.__name__}"
torch.save(G.state_dict(), f"{G_dir_path}/G_{epoch + 1}.pth")
torch.save(D.state_dict(), f"{D_dir_path}/D_{epoch + 1}.pth")
else:
D.eval()
G.eval()
epoch_G_loss = []
epoch_D_loss = []
with torch.inference_mode():
for epoch in tqdm(args.epochs):
mylogger.info(f"测试|开始训练第{epoch + 1}个epoch")
for batch, (ir_img, ir_label, (vi_img, vi_label),) in enumerate(zip(ir_dataloader, vi_dataloader)):
input_img = torch.cat([ir_img, vi_img], dim=1)
G_out = G(input_img)
D_out = D(G_out)
pos = D(vi_label)
batch_size = D_out.shape[0]
b = torch.rand([batch_size, 1], device=device) * 0.5 + 0.7
a = torch.rand([batch_size, 1], device=device) * 0.3
D_loss = mse_loss(D_out, a) + mse_loss(pos, b)
# D_loss = torch.mean(torch.square(D_out - torch.rand([args.batch_size, 1]) * 0.3)) + torch.mean(
# torch.square(pos - torch.rand([args.batch_size, 1]) * 0.5 + 0.7))
# G_content_loss = torch.mean(
# torch.square(G_out - ir_label) + 5 * torch.square(gradient(G_out) - gradient(vi_label)))
# G_adversarial_loss = torch.mean(torch.square(D_out - torch.rand([args.batch_size, 1]) * 0.5 + 0.7))
# G_loss = G_adversarial_loss + 100 * G_content_loss
# 生成器损失
c = torch.rand([batch_size, 1], device=device) * 0.5 + 0.7
G_adversarial_loss = mse_loss(D_out, c)
G_content_loss = l2_norm(G_out, ir_label) / G_out.numel() + 5 * l2_norm(gradient(G_out), gradient(
vi_label)) / G_out.numel()
G_ssim_loss = ssim_loss(G_out, ir_label) + 5 * ssim_loss(G_out, vi_label)
style_transfer_loss = vgg_loss(vi_label, ir_label, G_out)
G_loss = G_adversarial_loss + 100 * G_content_loss + 300 * G_ssim_loss + 100 * style_transfer_loss
epoch_G_loss.append(G_loss.item())
epoch_D_loss.append(D_loss.item())
if (epoch + 1) % args.log_interval == 0:
mean_G_loss = np.mean(epoch_G_loss)
mean_D_loss = np.mean(epoch_D_loss)
mylogger.info(f"测试|第{epoch + 1}个epoch|G_loss:{mean_G_loss:>5f}|D_loss:{mean_D_loss:>5f}")
writer.add_scalar("test/G_loss", mean_G_loss, epoch + 1)
writer.add_scalar("test/D_loss", mean_D_loss, epoch + 1)
writer.add_image("test/output_img", G_out.unsqueeze(0).detach().cpu(), epoch + 1)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='FusionGAN for pytorch.')
parser.add_argument("--is_train", "-t", type=str2bool, default=True)
parser.add_argument("--batch_size", "-b", type=int, default=32)
parser.add_argument("--model_name", "-m", type=str, default="U_GAN")
parser.add_argument("--patch_size", "-p", type=int, default=160)
parser.add_argument("--label_size", "-l", type=int, default=152)
parser.add_argument("--stride_size", "-s", type=int, default=60)
parser.add_argument("--epochs", "-e", type=int, default=30)
parser.add_argument("--do_patch", "-dp", type=str2bool, default=True)
parser.add_argument("--data_dir", "-d", type=str, default="./h5data", help="save path for h5 data")
parser.add_argument("--checkpoint_dir", "-c", type=str, default="./checkpoint", help="save path for torch model")
parser.add_argument("--log_dir", "-ld", type=str, default="./log.txt")
parser.add_argument("--vis_log", "-vl", type=str, default="./log", help="path for tensorboard visualization")
parser.add_argument("--learning_rate", "-lr", type=float, default=1e-4)
parser.add_argument("--log_interval", "-li", type=int, default=5)
parser.add_argument("--override_data", "-od", type=str2bool, default=False, help="whether to override dataset")
parser.add_argument("--generator_interval", "-gi", type=int, default=2, help="interval between update G")
args = parser.parse_args()
# 设置运行设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# tensorboard可视化
Path(args.vis_log).mkdir(exist_ok=True)
writer = SummaryWriter(log_dir=args.vis_log)
if args.model_name == "U_GAN":
G = U_GAN().to(device)
elif args.model_name == "FusionModel":
G = FusionModel().to(device)
elif args.model_name == "DDcGAN":
G = DDcGAN().to(device)
else:
G = FusionModel(True).to(device)
D = Discriminator().to(device)
mylogger = getLogger(f"{G.__class__.__name__}", log_dir=args.log_dir)
ir_dataset = imgDataset(path="./Train_ir")
vi_dataset = imgDataset(path="./Train_vi")
ir_dataloader = DataLoader(ir_dataset, batch_size=args.batch_size, shuffle=True)
vi_dataloader = DataLoader(vi_dataset, batch_size=args.batch_size, shuffle=True)
assert len(ir_dataloader) == len(vi_dataloader), "红外图像和可见光图像数量不一致"
# 模型保存文件夹创建
Path(args.checkpoint_dir).joinpath(f"{G.__class__.__name__}").mkdir(exist_ok=True, parents=True)
Path(args.checkpoint_dir).joinpath(f"{D.__class__.__name__}").mkdir(exist_ok=True, parents=True)
train(G, D, ir_dataloader, vi_dataloader)