-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
194 lines (148 loc) · 7.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import os
import re
import numpy as np
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
import environment
import tpu
from models import DQNAgent
from utils import utils
from utils.helper import play_and_record, compute_td_loss, evaluate
from utils.replay_buffer import ReplayBuffer
def get_args():
ap = argparse.ArgumentParser()
ap.add_argument("-e", "--environment", default="BreakoutDeterministic-v4", help="Envirement to play")
ap.add_argument("-l", "--log_dir", default="logs", help="Logs dir for tensorboard")
ap.add_argument("-t", "--train_dir", default="train_dir", help="Checkpoint directory")
ap.add_argument("-c", "--checkpoint", default=None, help="Checkpoint for agent")
ap.add_argument("--double_dqn", action='store_true', help="Enable double_dqn")
ap.add_argument("--dueling", action='store_true', help="Enable dueling dqn")
ap.add_argument("--priority_replay", action='store_true', help="Enable priority replay")
ap.add_argument("--replay_size", default=int(10e5), type=int, help="Replay buffer size")
ap.add_argument("--tpu", action='store_true', help="Enable TPU")
ap.add_argument("--batch_size", default=32, type=int, help="Batch size for training")
ap.add_argument("--init_epsilon", default=1.0, type=float, help="Intial value of epsilon")
ap.add_argument("--final_epsilon", default=0.01, type=float, help="Final value of epsilon")
ap.add_argument("--lr", default=1e-5, type=float, help="Learning Rate")
ap.add_argument("--max_grad_norm", default=20.0, type=float, help="Gradient clipping")
ap.add_argument("--gamma", default=0.99, type=float, help="Discounting factor")
ap.add_argument("--steps", default=int(10e6), type=int, help="Training steps")
ap.add_argument("--loss_freq", default=50, type=int, help="loss frequency")
ap.add_argument("--target_freq", default=2500, type=int, help="Target network update frequency")
ap.add_argument("--eval_freq", default=2500, type=int, help="Evalualtion frequency")
opt = ap.parse_args()
return opt
def train(make_env, agent, target_network, device, writer, opt):
timesteps_per_epoch = 4
batch_size = opt.batch_size
total_steps = opt.steps
checkpoint_path = opt.train_dir
if not os.path.exists(checkpoint_path):
os.mkdir(checkpoint_path)
init_epsilon = opt.init_epsilon
final_epsilon = opt.final_epsilon
loss_freq = opt.loss_freq
refresh_target_network_freq = opt.target_freq
eval_freq = opt.eval_freq
max_grad_norm = opt.max_grad_norm
priority_replay = opt.priority_replay
replay_size = opt.replay_size
gamma = opt.gamma
optim = torch.optim.Adam(agent.parameters(), lr=opt.lr)
env = make_env(clip_rewards=True)
step = 0
state = env.reset()
if opt.checkpoint:
agent.load_state_dict(torch.load(opt.checkpoint))
target_network.load_state_dict(torch.load(opt.checkpoint))
step = int(re.findall(r'\d+', opt.checkpoint)[-1])
agent.epsilon = utils.linear_decay(init_epsilon, final_epsilon, step, total_steps)
play_steps = int(10e2)
exp_replay = ReplayBuffer(replay_size, priority_replay)
for i in tqdm(range(100)):
if not utils.is_enough_ram(min_available_gb=0.1):
print("""
Less than 100 Mb RAM available.
Make sure the buffer size in not too huge.
Also check, maybe other processes consume RAM heavily.
"""
)
break
play_and_record(state, agent, env, exp_replay, n_steps=play_steps)
print("Experience Reply buffer : {}".format(len(exp_replay)))
double_dqn = opt.double_dqn
if double_dqn:
print("Double DQN will be used for loss")
if priority_replay:
print("Priority replay")
score = evaluate(make_env(clip_rewards=False), agent, greedy=True)
print("Score without training: {}".format(score))
env.reset()
for step in trange(step, total_steps + 1):
if not utils.is_enough_ram():
print('less that 100 Mb RAM available, freezing')
print('make sure everythin is ok and make KeyboardInterrupt to continue')
try:
while True:
pass
except KeyboardInterrupt:
pass
agent.epsilon = utils.linear_decay(init_epsilon, final_epsilon, step, total_steps)
# play
_, state = play_and_record(state, agent, env, exp_replay, timesteps_per_epoch)
states_bn, actions_bn, rewards_bn, next_states_bn, is_done_bn, is_weight = exp_replay.sample(batch_size)
optim.zero_grad()
loss, error = compute_td_loss(states_bn, actions_bn, rewards_bn, next_states_bn, is_done_bn,
agent, target_network, is_weight,
gamma=gamma,
check_shapes=False,
device=device,
double_dqn=double_dqn)
loss.backward()
grad_norm = nn.utils.clip_grad_norm_(agent.parameters(), max_grad_norm)
optim.step()
exp_replay.update_priority(error)
if step % loss_freq == 0:
td_loss = loss.data.cpu().item()
grad_norm = grad_norm
assert not np.isnan(td_loss)
writer.add_scalar("Training/TD loss history", td_loss, step)
writer.add_scalar("Training/Grad norm history", grad_norm, step)
if step % refresh_target_network_freq == 0:
target_network.load_state_dict(agent.state_dict())
torch.save(agent.state_dict(), os.path.join(checkpoint_path, "agent_{}.pth".format(step)))
if step % eval_freq == 0:
mean_rw = evaluate(make_env(clip_rewards=False), agent, greedy=True)
initial_state_q_values = agent.get_qvalues(
[make_env(seed=step).reset()]
)
initial_state_v = np.max(initial_state_q_values)
print("buffer size = %i, epsilon = %.5f, mean_rw=%.2f, initial_state_v= %.2f" % (
len(exp_replay), agent.epsilon, mean_rw, initial_state_v))
writer.add_scalar("Eval/Mean reward per life", mean_rw, step)
writer.add_scalar("Eval/Initial state V", initial_state_v, step)
writer.close()
torch.save(agent.state_dict(), os.path.join(checkpoint_path, "agent_{}.pth".format(total_steps)))
def main():
opt = get_args()
assert opt.environment in environment.ENV_DICT.keys(), \
"Unsupported environment: {} \nSupported environemts: {}".format(opt.environment, environment.ENV_DICT.keys())
writer = SummaryWriter(opt.log_dir)
if opt.tpu:
device = tpu.get_TPU()
else:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ENV = environment.ENV_DICT[opt.environment]
env = ENV.make_env()
state_shape = env.observation_space.shape
n_actions = env.action_space.n
agent = DQNAgent(dueling=opt.dueling, state_shape=state_shape, n_actions=n_actions).to(device)
target_network = DQNAgent(dueling=opt.dueling, state_shape=state_shape, n_actions=n_actions).to(device)
writer.add_graph(agent, torch.tensor([env.reset()]).to(device))
writer.close()
train(ENV.make_env, agent, target_network, device, writer, opt)
if __name__ == '__main__':
main()