-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_network.py
executable file
·363 lines (299 loc) · 11.4 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from __future__ import absolute_import
from __future__ import print_function
import uuid
import time
import os
import numpy as np
import tensorflow as tf
import six
import six.moves.cPickle as pickle
from six import add_metaclass
from abc import ABCMeta, abstractmethod, abstractproperty
class cachedproperty(object):
"""Simplified version of https://github.com/pydanny/cached-property"""
def __init__(self, function):
self.__doc__ = getattr(function, '__doc__')
self.function = function
def __get__(self, instance, klass):
if instance is None: return self
value = instance.__dict__[self.function.__name__] = self.function(instance)
return value
def l1_loss(x):
return tf.reduce_sum(tf.abs(x))
def l2_loss(x):
return tf.nn.l2_loss(x)
def squared_cos_sim(v,w,eps=1e-6):
num = tf.reduce_sum(v*w, axis=1)**2
den = tf.reduce_sum(v*v, axis=1)*tf.reduce_sum(w*w, axis=1)
return num / (den + eps)
def train_diverse_models(cls, n, X, y,
grad_quantity='binary_logit_input_gradients',
lambda_overlap=0.01, **kw):
models = [cls() for _ in range(n)]
igrads = [getattr(m, grad_quantity) for m in models]
regular_loss = tf.add_n([m.loss_function(**kw) for m in models])
diverse_loss = tf.add_n([tf.reduce_sum(squared_cos_sim(igrads[i], igrads[j]))
for i in range(n)
for j in range(i+1, n)]) * lambda_overlap
loss = regular_loss + diverse_loss
ops = { 'xent': regular_loss, 'same': diverse_loss }
for i, m in enumerate(models, 1):
ops['acc{}'.format(i)] = m.accuracy
data = train_batches(models, X, y, **kw)
with tf.Session() as sess:
minimize(sess, loss, data, operations=ops, **kw)
for m in models:
m.vals = [v.eval() for v in m.vars]
return models
"""
Class attempting to make Tensorflow models more object-oriented
and similar to sklearn's fit/predict interface.
"""
@add_metaclass(ABCMeta)
class NeuralNetwork():
def __init__(self, name=None, dtype=tf.float32, **kwargs):
self.vals = None
self.name = (name or str(uuid.uuid4()))
self.dtype = dtype
self.setup_model(**kwargs)
assert(hasattr(self, 'X'))
assert(hasattr(self, 'y'))
assert(hasattr(self, 'logits'))
def setup_model(self, X=None, y=None, **kw):
with tf.name_scope(self.name):
self.X = tf.placeholder(self.dtype, self.x_shape, name="X") if X is None else X
self.y = tf.placeholder(self.dtype, self.y_shape, name="y") if y is None else y
self.is_train = tf.placeholder_with_default(
tf.constant(False, dtype=tf.bool), shape=(), name="is_train")
self.model = self.rebuild_model(self.X, **kw)
self.recompute_vars()
@property
def logits(self):
return self.model[-1]
def rebuild_model(self, X, reuse=None, **kw):
"""Define all of your Tensorflow variables here, making sure to scope them
under `self.name`, and also making sure to return a list/tuple whose final element
is your network's logits. In subclasses, remember to call super!"""
@abstractproperty
def x_shape(self):
"""Specify the shape of X; for MNIST, this could be [None, 784]"""
@abstractproperty
def y_shape(self):
"""Specify the shape of y; for MNIST, this would be [None, 10]"""
@property
def num_features(self):
return np.product(self.x_shape[1:])
@property
def num_classes(self):
return np.product(self.y_shape[1:])
@property
def trainable_vars(self):
return [v for v in tf.trainable_variables() if v in self.vars]
def input_grad(self, f):
return tf.gradients(f, self.X)[0]
def cross_entropy_with(self, y):
return tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=y))
@cachedproperty
def preds(self):
return tf.argmax(self.logits, axis=1)
@cachedproperty
def probs(self):
return tf.nn.softmax(self.logits)
@cachedproperty
def logps(self):
return self.logits - tf.reduce_logsumexp(self.logits, 1, keep_dims=True)
@cachedproperty
def grad_sum_logps(self):
return self.input_grad(self.logps)
@cachedproperty
def l1_weights(self):
return tf.add_n([l1_loss(v) for v in self.trainable_vars])
@cachedproperty
def l2_weights(self):
return tf.add_n([l2_loss(v) for v in self.trainable_vars])
@cachedproperty
def cross_entropy(self):
return self.cross_entropy_with(self.y)
@cachedproperty
def cross_entropy_input_gradients(self):
return self.input_grad(self.cross_entropy)
@cachedproperty
def predicted_logit_input_gradients(self):
return self.input_grad(self.logits * self.y)
@cachedproperty
def l1_double_backprop(self):
return l1_loss(self.cross_entropy_input_gradients)
@cachedproperty
def l2_double_backprop(self):
return l2_loss(self.cross_entropy_input_gradients)
@cachedproperty
def l1_grad_sum_logps(self):
return l1_loss(self.grad_sum_logps)
@cachedproperty
def l2_grad_sum_logps(self):
return l2_loss(self.grad_sum_logps)
@cachedproperty
def l1_binary_logit_grads(self):
return l1_loss(self.binary_logit_input_gradients)
@cachedproperty
def l2_binary_logit_grads(self):
return l2_loss(self.binary_logit_input_gradients)
@cachedproperty
def binary_logits(self):
assert(self.num_classes == 2)
return self.logps[:,1] - self.logps[:,0]
@cachedproperty
def binary_logit_input_gradients(self):
return self.input_grad(self.binary_logits)
@cachedproperty
def accuracy(self):
return tf.reduce_mean(tf.cast(tf.equal(self.preds, tf.argmax(self.y, 1)), dtype=tf.float32))
def score(self, X, y, **kw):
if len(y.shape) == 2:
return np.mean(self.predict(X, **kw) == np.argmax(y, 1))
else:
return np.mean(self.predict(X, **kw) == y)
def score_(self, sess, X, y, **kw):
if len(y.shape) == 2:
return np.mean(self.batch_eval(sess, self.preds, X, **kw) == np.argmax(y, 1))
else:
return np.mean(self.batch_eval(sess, self.preds, X, **kw) == y)
def predict(self, X, **kw):
with tf.Session() as sess:
self.init(sess)
return self.batch_eval(sess, self.preds, X, **kw)
def predict_logits(self, X, **kw):
with tf.Session() as sess:
self.init(sess)
return self.batch_eval(sess, self.logits, X, **kw)
def predict_binary_logodds(self, X, **kw):
with tf.Session() as sess:
self.init(sess)
return self.batch_eval(sess, self.binary_logits, X, **kw)
def predict_proba(self, X, **kw):
with tf.Session() as sess:
self.init(sess)
return self.batch_eval(sess, self.probs, X, **kw)
def batch_eval(self, sess, quantity, X, n=256):
vals = sess.run(quantity, feed_dict={ self.X: X[:n] })
stack = np.vstack if len(vals.shape) > 1 else np.hstack
for i in range(n, len(X), n):
vals = stack((vals, sess.run(quantity, feed_dict={ self.X: X[i:i+n] })))
return vals
def input_gradients(self, X, y=None, n=256, **kw):
"""Batched version of input gradients"""
with tf.Session() as sess:
self.init(sess)
return self.batch_input_gradients_(sess, X, y, n, **kw)
def batch_input_gradients_(self, sess, X, y=None, n=256, **kw):
yy = y[:n] if y is not None and not isint(y) else y
grads = self.input_gradients_(sess, X[:n], yy, **kw)
for i in range(n, len(X), n):
yy = y[i:i+n] if y is not None and not isint(y) else y
grads = np.vstack((grads,
self.input_gradients_(sess, X[i:i+n], yy, **kw)))
return grads
def input_gradients_(self, sess, X, y=None, logits=False, quantity=None):
if quantity is not None:
return sess.run(quantity, feed_dict={ self.X: X })
if y is None:
return sess.run(self.grad_sum_logps, feed_dict={ self.X: X })
elif logits and self.num_classes == 2:
return sess.run(self.binary_logit_input_gradients, feed_dict={ self.X: X })
elif isint(y):
y = onehot(np.array([y]*len(X)), self.num_classes)
feed = { self.X: X, self.y: y }
if logits:
return sess.run(self.predicted_logit_input_gradients, feed_dict=feed)
else:
return sess.run(self.cross_entropy_input_gradients, feed_dict=feed)
def loss_function(self,
l1_weights=0., l2_weights=0.,
l1_grad_sum_logps=0., l2_grad_sum_logps=0.,
l1_double_backprop=0., l2_double_backprop=0.,
l1_binary_logit_grads=0., l2_binary_logit_grads=0.,
**kw):
log_likelihood = self.cross_entropy
log_prior = 0
for reg in ['l1_double_backprop', 'l2_double_backprop',
'l1_weights', 'l2_weights',
'l1_grad_sum_logps', 'l2_grad_sum_logps',
'l1_binary_logit_grads', 'l2_binary_logit_grads']:
if eval(reg) > 0:
log_prior += eval(reg) * getattr(self, reg)
return log_likelihood + log_prior
def fit(self, X, y, loss_fn=None, init=False, **kw):
if loss_fn is None:
loss_fn = self.loss_function(**kw)
if len(y.shape) == 1:
y = onehot(y, self.num_classes)
ops = { 'xent': self.cross_entropy, 'loss': loss_fn, 'accu': self.accuracy }
batches = train_batches([self], X, y, **kw)
with tf.Session() as sess:
if init: self.init(sess)
minimize(sess, loss_fn, batches, ops, **kw)
self.vals = [v.eval() for v in self.vars]
@classmethod
def train_diverse_models(cls, n, X, y, **kw):
if len(y.shape) == 1:
y = onehot(y)
return train_diverse_models(cls, n, X, y, **kw)
def recompute_vars(self):
self.vars = tf.get_default_graph().get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name)
def init(self, sess):
if self.vals is None:
sess.run(tf.global_variables_initializer())
else:
for var, val in zip(self.vars, self.vals):
sess.run(var.assign(val))
def save(self, filename):
with open(filename, 'wb') as f:
pickle.dump(self.vals, f)
def load(self, filename):
with open(filename, 'rb') as f:
self.vals = pickle.load(f)
def isint(x):
return isinstance(x, (int, np.int32, np.int64))
def onehot(Y, K=None):
if K is None:
K = np.unique(Y)
elif isint(K):
K = list(range(K))
data = np.array([[y == k for k in K] for y in Y]).astype(int)
return data
def minibatch_indexes(lenX, batch_size=256, num_epochs=50, **kw):
n = int(np.ceil(lenX / batch_size))
for epoch in range(num_epochs):
for batch in range(n):
i = epoch*n + batch
yield i, epoch, slice((i%n)*batch_size, ((i%n)+1)*batch_size)
def train_feed(idx, models, **kw):
feed = {}
for m in models:
feed[m.is_train] = True
for dictionary in [kw, kw.get('feed_dict', {})]:
for key, val in six.iteritems(dictionary):
attr = getattr(m, key) if isinstance(key, str) and hasattr(m, key) else key
if type(attr) == type(m.X):
if len(attr.shape) > 1:
if attr.shape[0].value is None:
feed[attr] = val[idx]
return feed
def train_batches(models, X, y, **kw):
for i, epoch, idx in minibatch_indexes(len(X), **kw):
yield i, epoch, train_feed(idx, models, X=X, y=y, **kw)
def minimize(sess, loss_fn, batches, operations={}, learning_rate=0.001, print_every=None, **kw):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_fn)
op_keys = sorted(list(operations.keys()))
ops = [train_op] + [operations[k] for k in op_keys]
t = time.time()
sess.run(tf.global_variables_initializer())
for i, epoch, batch in batches:
results = sess.run(ops, feed_dict=batch)
if print_every and i % print_every == 0:
s = 'Batch {}, epoch {}, time {:.1f}s'.format(i, epoch, time.time() - t)
for j,k in enumerate(op_keys, 1):
s += ', {} {:.4f}'.format(k, results[j])
print(s)