forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
322 lines (270 loc) · 13.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# -*- coding: utf-8 -*-
# File: config.py
import numpy as np
import os
import pprint
import six
from tensorpack.utils import logger
from tensorpack.utils.gpu import get_num_gpu
__all__ = ['config', 'finalize_configs']
class AttrDict():
_freezed = False
""" Avoid accidental creation of new hierarchies. """
def __getattr__(self, name):
if self._freezed:
raise AttributeError(name)
if name.startswith('_'):
# Do not mess with internals. Otherwise copy/pickle will fail
raise AttributeError(name)
ret = AttrDict()
setattr(self, name, ret)
return ret
def __setattr__(self, name, value):
if self._freezed and name not in self.__dict__:
raise AttributeError(
"Config was freezed! Unknown config: {}".format(name))
super().__setattr__(name, value)
def __str__(self):
return pprint.pformat(self.to_dict(), indent=1, width=100, compact=True)
__repr__ = __str__
def to_dict(self):
"""Convert to a nested dict. """
return {k: v.to_dict() if isinstance(v, AttrDict) else v
for k, v in self.__dict__.items() if not k.startswith('_')}
def from_dict(self, d):
self.freeze(False)
for k, v in d.items():
self_v = getattr(self, k)
if isinstance(self_v, AttrDict):
self_v.from_dict(v)
else:
setattr(self, k, v)
def update_args(self, args):
"""Update from command line args. """
for cfg in args:
keys, v = cfg.split('=', maxsplit=1)
keylist = keys.split('.')
dic = self
for k in keylist[:-1]:
assert k in dir(dic), "Unknown config key: {}".format(keys)
dic = getattr(dic, k)
key = keylist[-1]
oldv = getattr(dic, key)
if not isinstance(oldv, str):
v = eval(v)
setattr(dic, key, v)
def freeze(self, freezed=True):
self._freezed = freezed
for v in self.__dict__.values():
if isinstance(v, AttrDict):
v.freeze(freezed)
# avoid silent bugs
def __eq__(self, _):
raise NotImplementedError()
def __ne__(self, _):
raise NotImplementedError()
config = AttrDict()
_C = config # short alias to avoid coding
# mode flags ---------------------
_C.TRAINER = 'replicated' # options: 'horovod', 'replicated'
_C.MODE_MASK = True # Faster R-CNN or Mask R-CNN
_C.MODE_FPN = True
# dataset -----------------------
_C.DATA.BASEDIR = '/path/to/your/DATA/DIR'
# All available dataset names are defined in `dataset/coco.py:register_coco`.
# All TRAIN dataset will be concatenated for training.
_C.DATA.TRAIN = ('coco_train2017',) # i.e. trainval35k
# Each VAL dataset will be evaluated separately (instead of concatenated)
_C.DATA.VAL = ('coco_val2017',) # AKA minival2014
# These two configs will be populated later inside `finalize_configs`.
_C.DATA.NUM_CATEGORY = -1 # without the background class (e.g., 80 for COCO)
_C.DATA.CLASS_NAMES = [] # NUM_CLASS (NUM_CATEGORY+1) strings, the first is "BG".
# whether the coordinates in your registered dataset are
# absolute pixel values in range [0, W or H] or relative values in [0, 1]
_C.DATA.ABSOLUTE_COORD = True
# Filter Negative Samples from dataset
_C.DATA.FILTER_EMPTY_ANNOTATIONS = True
# Number of data loading workers.
# In case of horovod training, this is the number of workers per-GPU (so you may want to use a smaller number).
# Set to 0 to disable parallel data loading
_C.DATA.NUM_WORKERS = 10
# backbone ----------------------
_C.BACKBONE.WEIGHTS = ''
# To train from scratch, set it to empty, and set FREEZE_AT to 0
# To train from ImageNet pre-trained models, use the one that matches your
# architecture from http://models.tensorpack.com under the 'FasterRCNN' section.
# To train from an existing COCO model, use the path to that file, and change
# the other configurations according to that model.
_C.BACKBONE.RESNET_NUM_BLOCKS = [3, 4, 6, 3] # for resnet50
# RESNET_NUM_BLOCKS = [3, 4, 23, 3] # for resnet101
_C.BACKBONE.FREEZE_AFFINE = False # do not train affine parameters inside norm layers
_C.BACKBONE.NORM = 'FreezeBN' # options: FreezeBN, SyncBN, GN, None
_C.BACKBONE.FREEZE_AT = 2 # options: 0, 1, 2. How many stages in backbone to freeze (not training)
# Use a base model with TF-preferred padding mode,
# which may pad more pixels on right/bottom than top/left.
# See https://github.com/tensorflow/tensorflow/issues/18213
# In tensorpack model zoo, ResNet models with TF_PAD_MODE=False are marked with "-AlignPadding".
# All other models under `ResNet/` in the model zoo are using TF_PAD_MODE=True.
# Using either one should probably give the same performance.
# We use the "AlignPadding" one just to be consistent with caffe2.
_C.BACKBONE.TF_PAD_MODE = False
_C.BACKBONE.STRIDE_1X1 = False # True for MSRA models
# schedule -----------------------
_C.TRAIN.NUM_GPUS = None # by default, will be set from code
_C.TRAIN.WEIGHT_DECAY = 1e-4
_C.TRAIN.BASE_LR = 1e-2 # defined for total batch size=8. Otherwise it will be adjusted automatically
_C.TRAIN.WARMUP = 1000 # in terms of iterations. This is not affected by #GPUs
_C.TRAIN.WARMUP_INIT_LR = 1e-5 # defined for total batch size=8. Otherwise it will be adjusted automatically
_C.TRAIN.STEPS_PER_EPOCH = 500
_C.TRAIN.STARTING_EPOCH = 1 # the first epoch to start with, useful to continue a training
# LR_SCHEDULE means equivalent steps when the total batch size is 8.
# It can be either a string like "3x" that refers to standard convention, or a list of int.
# LR_SCHEDULE=3x is the same as LR_SCHEDULE=[420000, 500000, 540000], which
# means to decrease LR at steps 420k and 500k and stop training at 540k.
# When the total bs!=8, the actual iterations to decrease learning rate, and
# the base learning rate are computed from BASE_LR and LR_SCHEDULE.
# Therefore, there is *no need* to modify the config if you only change the number of GPUs.
_C.TRAIN.LR_SCHEDULE = "1x" # "1x" schedule in detectron
_C.TRAIN.EVAL_PERIOD = 50 # period (epochs) to run evaluation
_C.TRAIN.CHECKPOINT_PERIOD = 20 # period (epochs) to save model
# preprocessing --------------------
# Alternative old (worse & faster) setting: 600
_C.PREPROC.TRAIN_SHORT_EDGE_SIZE = [800, 800] # [min, max] to sample from
_C.PREPROC.TEST_SHORT_EDGE_SIZE = 800
_C.PREPROC.MAX_SIZE = 1333
# mean and std in RGB order.
# Un-scaled version: [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
_C.PREPROC.PIXEL_MEAN = [123.675, 116.28, 103.53]
_C.PREPROC.PIXEL_STD = [58.395, 57.12, 57.375]
# anchors -------------------------
_C.RPN.ANCHOR_STRIDE = 16
_C.RPN.ANCHOR_SIZES = (32, 64, 128, 256, 512) # sqrtarea of the anchor box
_C.RPN.ANCHOR_RATIOS = (0.5, 1., 2.)
_C.RPN.POSITIVE_ANCHOR_THRESH = 0.7
_C.RPN.NEGATIVE_ANCHOR_THRESH = 0.3
# rpn training -------------------------
_C.RPN.FG_RATIO = 0.5 # fg ratio among selected RPN anchors
_C.RPN.BATCH_PER_IM = 256 # total (across FPN levels) number of anchors that are marked valid
_C.RPN.MIN_SIZE = 0
_C.RPN.PROPOSAL_NMS_THRESH = 0.7
# Anchors which overlap with a crowd box (IOA larger than threshold) will be ignored.
# Setting this to a value larger than 1.0 will disable the feature.
# It is disabled by default because Detectron does not do this.
_C.RPN.CROWD_OVERLAP_THRESH = 9.99
_C.RPN.HEAD_DIM = 1024 # used in C4 only
# RPN proposal selection -------------------------------
# for C4
_C.RPN.TRAIN_PRE_NMS_TOPK = 12000
_C.RPN.TRAIN_POST_NMS_TOPK = 2000
_C.RPN.TEST_PRE_NMS_TOPK = 6000
_C.RPN.TEST_POST_NMS_TOPK = 1000 # if you encounter OOM in inference, set this to a smaller number
# for FPN, #proposals per-level and #proposals after merging are (for now) the same
# if FPN.PROPOSAL_MODE = 'Joint', these options have no effect
_C.RPN.TRAIN_PER_LEVEL_NMS_TOPK = 2000
_C.RPN.TEST_PER_LEVEL_NMS_TOPK = 1000
# fastrcnn training ---------------------
_C.FRCNN.BATCH_PER_IM = 512
_C.FRCNN.BBOX_REG_WEIGHTS = [10., 10., 5., 5.] # Slightly better setting: 20, 20, 10, 10
_C.FRCNN.FG_THRESH = 0.5
_C.FRCNN.FG_RATIO = 0.25 # fg ratio in a ROI batch
# FPN -------------------------
_C.FPN.ANCHOR_STRIDES = (4, 8, 16, 32, 64) # strides for each FPN level. Must be the same length as ANCHOR_SIZES
_C.FPN.PROPOSAL_MODE = 'Level' # 'Level', 'Joint'
_C.FPN.NUM_CHANNEL = 256
_C.FPN.NORM = 'None' # 'None', 'GN'
# The head option is only used in FPN. For C4 models, the head is C5
_C.FPN.FRCNN_HEAD_FUNC = 'fastrcnn_2fc_head'
# choices: fastrcnn_2fc_head, fastrcnn_4conv1fc_{,gn_}head
_C.FPN.FRCNN_CONV_HEAD_DIM = 256
_C.FPN.FRCNN_FC_HEAD_DIM = 1024
_C.FPN.MRCNN_HEAD_FUNC = 'maskrcnn_up4conv_head' # choices: maskrcnn_up4conv_{,gn_}head
# Mask R-CNN
_C.MRCNN.HEAD_DIM = 256
_C.MRCNN.ACCURATE_PASTE = True # slightly more aligned results, but very slow on numpy
# Cascade R-CNN, only available in FPN mode
_C.FPN.CASCADE = False
_C.CASCADE.IOUS = [0.5, 0.6, 0.7]
_C.CASCADE.BBOX_REG_WEIGHTS = [[10., 10., 5., 5.], [20., 20., 10., 10.], [30., 30., 15., 15.]]
# testing -----------------------
_C.TEST.FRCNN_NMS_THRESH = 0.5
# Smaller threshold value gives significantly better mAP. But we use 0.05 for consistency with Detectron.
# mAP with 1e-4 threshold can be found at https://github.com/tensorpack/tensorpack/commit/26321ae58120af2568bdbf2269f32aa708d425a8#diff-61085c48abee915b584027e1085e1043 # noqa
_C.TEST.RESULT_SCORE_THRESH = 0.05
_C.TEST.RESULT_SCORE_THRESH_VIS = 0.5 # only visualize confident results
_C.TEST.RESULTS_PER_IM = 100
_C.freeze() # avoid typo / wrong config keys
def finalize_configs(is_training):
"""
Run some sanity checks, and populate some configs from others
"""
_C.freeze(False) # populate new keys now
if isinstance(_C.DATA.VAL, six.string_types): # support single string (the typical case) as well
_C.DATA.VAL = (_C.DATA.VAL, )
if isinstance(_C.DATA.TRAIN, six.string_types): # support single string
_C.DATA.TRAIN = (_C.DATA.TRAIN, )
# finalize dataset definitions ...
from dataset import DatasetRegistry
datasets = list(_C.DATA.TRAIN) + list(_C.DATA.VAL)
_C.DATA.CLASS_NAMES = DatasetRegistry.get_metadata(datasets[0], "class_names")
_C.DATA.NUM_CATEGORY = len(_C.DATA.CLASS_NAMES) - 1
assert _C.BACKBONE.NORM in ['FreezeBN', 'SyncBN', 'GN', 'None'], _C.BACKBONE.NORM
if _C.BACKBONE.NORM != 'FreezeBN':
assert not _C.BACKBONE.FREEZE_AFFINE
assert _C.BACKBONE.FREEZE_AT in [0, 1, 2]
_C.RPN.NUM_ANCHOR = len(_C.RPN.ANCHOR_SIZES) * len(_C.RPN.ANCHOR_RATIOS)
assert len(_C.FPN.ANCHOR_STRIDES) == len(_C.RPN.ANCHOR_SIZES)
# image size into the backbone has to be multiple of this number
_C.FPN.RESOLUTION_REQUIREMENT = _C.FPN.ANCHOR_STRIDES[3] # [3] because we build FPN with features r2,r3,r4,r5
if _C.MODE_FPN:
size_mult = _C.FPN.RESOLUTION_REQUIREMENT * 1.
_C.PREPROC.MAX_SIZE = np.ceil(_C.PREPROC.MAX_SIZE / size_mult) * size_mult
assert _C.FPN.PROPOSAL_MODE in ['Level', 'Joint']
assert _C.FPN.FRCNN_HEAD_FUNC.endswith('_head')
assert _C.FPN.MRCNN_HEAD_FUNC.endswith('_head')
assert _C.FPN.NORM in ['None', 'GN']
if _C.FPN.CASCADE:
# the first threshold is the proposal sampling threshold
assert _C.CASCADE.IOUS[0] == _C.FRCNN.FG_THRESH
assert len(_C.CASCADE.BBOX_REG_WEIGHTS) == len(_C.CASCADE.IOUS)
if is_training:
train_scales = _C.PREPROC.TRAIN_SHORT_EDGE_SIZE
if isinstance(train_scales, (list, tuple)) and train_scales[1] - train_scales[0] > 100:
# don't autotune if augmentation is on
os.environ['TF_CUDNN_USE_AUTOTUNE'] = '0'
os.environ['TF_AUTOTUNE_THRESHOLD'] = '1'
assert _C.TRAINER in ['horovod', 'replicated'], _C.TRAINER
lr = _C.TRAIN.LR_SCHEDULE
if isinstance(lr, six.string_types):
if lr.endswith("x"):
LR_SCHEDULE_KITER = {
"{}x".format(k):
[180 * k - 120, 180 * k - 40, 180 * k]
for k in range(2, 10)}
LR_SCHEDULE_KITER["1x"] = [120, 160, 180]
_C.TRAIN.LR_SCHEDULE = [x * 1000 for x in LR_SCHEDULE_KITER[lr]]
else:
_C.TRAIN.LR_SCHEDULE = eval(lr)
# setup NUM_GPUS
if _C.TRAINER == 'horovod':
import horovod.tensorflow as hvd
ngpu = hvd.size()
logger.info("Horovod Rank={}, Size={}, LocalRank={}".format(
hvd.rank(), hvd.size(), hvd.local_rank()))
else:
assert 'OMPI_COMM_WORLD_SIZE' not in os.environ
ngpu = get_num_gpu()
assert ngpu > 0, "Has to train with GPU!"
assert ngpu % 8 == 0 or 8 % ngpu == 0, "Can only train with 1,2,4 or >=8 GPUs, but found {} GPUs".format(ngpu)
else:
# autotune is too slow for inference
os.environ['TF_CUDNN_USE_AUTOTUNE'] = '0'
ngpu = get_num_gpu()
if _C.TRAIN.NUM_GPUS is None:
_C.TRAIN.NUM_GPUS = ngpu
else:
if _C.TRAINER == 'horovod':
assert _C.TRAIN.NUM_GPUS == ngpu
else:
assert _C.TRAIN.NUM_GPUS <= ngpu
_C.freeze()
logger.info("Config: ------------------------------------------\n" + str(_C))