forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInfoGAN-mnist.py
executable file
·280 lines (226 loc) · 10.4 KB
/
InfoGAN-mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: InfoGAN-mnist.py
# Author: Yuxin Wu
import argparse
import numpy as np
import os
import cv2
import tensorflow as tf
from tensorpack import *
from tensorpack.dataflow import dataset
from tensorpack.tfutils import gradproc, optimizer, summary
from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope, under_name_scope
from tensorpack.utils import viz
from GAN import GANModelDesc, GANTrainer
"""
To train:
./InfoGAN-mnist.py
To visualize:
./InfoGAN-mnist.py --sample --load path/to/model
A pretrained model is at http://models.tensorpack.com/#GAN
"""
BATCH = 128
# latent space is cat(10) x uni(2) x noise(NOISE_DIM)
NUM_CLASS = 10
NUM_UNIFORM = 2
DIST_PARAM_DIM = NUM_CLASS + NUM_UNIFORM
NOISE_DIM = 62
# prior: the assumption how the latent factors are presented in the dataset
DIST_PRIOR_PARAM = [1.] * NUM_CLASS + [0.] * NUM_UNIFORM
def shapeless_placeholder(x, axis, name):
"""
Make the static shape of a tensor less specific.
If you want to feed to a tensor, the shape of the feed value must match
the tensor's static shape. This function creates a placeholder which
defaults to x if not fed, but has a less specific static shape than x.
See also `tensorflow#5680 <https://github.com/tensorflow/tensorflow/issues/5680>`_.
Args:
x: a tensor
axis(int or list of ints): these axes of ``x.get_shape()`` will become
None in the output.
name(str): name of the output tensor
Returns:
a tensor equal to x, but shape information is partially cleared.
"""
shp = x.get_shape().as_list()
if not isinstance(axis, list):
axis = [axis]
for a in axis:
if shp[a] is None:
raise ValueError("Axis {} of shape {} is already unknown!".format(a, shp))
shp[a] = None
x = tf.placeholder_with_default(x, shape=shp, name=name)
return x
def get_distributions(vec_cat, vec_uniform):
cat = tf.distributions.Categorical(logits=vec_cat, validate_args=True, name='cat')
uni = tf.distributions.Normal(vec_uniform, scale=1., validate_args=True, allow_nan_stats=False, name='uni_a')
return cat, uni
def entropy_from_samples(samples, vec):
"""
Estimate H(x|s) ~= -E_{x \sim P(x|s)}[\log Q(x|s)], where x are samples, and Q is parameterized by vec.
"""
samples_cat = tf.argmax(samples[:, :NUM_CLASS], axis=1, output_type=tf.int32)
samples_uniform = samples[:, NUM_CLASS:]
cat, uniform = get_distributions(vec[:, :NUM_CLASS], vec[:, NUM_CLASS:])
def neg_logprob(dist, sample, name):
nll = -dist.log_prob(sample)
# average over batch
return tf.reduce_sum(tf.reduce_mean(nll, axis=0), name=name)
entropies = [neg_logprob(cat, samples_cat, 'nll_cat'),
neg_logprob(uniform, samples_uniform, 'nll_uniform')]
return entropies
@under_name_scope()
def sample_prior(batch_size):
cat, _ = get_distributions(DIST_PRIOR_PARAM[:NUM_CLASS], DIST_PRIOR_PARAM[NUM_CLASS:])
sample_cat = tf.one_hot(cat.sample(batch_size), NUM_CLASS)
"""
OpenAI official code actually models the "uniform" latent code as
a Gaussian distribution, but obtain the samples from a uniform distribution.
"""
sample_uni = tf.random_uniform([batch_size, NUM_UNIFORM], -1, 1)
samples = tf.concat([sample_cat, sample_uni], axis=1)
return samples
class Model(GANModelDesc):
def inputs(self):
return [tf.TensorSpec((None, 28, 28), tf.float32, 'input')]
def generator(self, z):
l = FullyConnected('fc0', z, 1024, activation=BNReLU)
l = FullyConnected('fc1', l, 128 * 7 * 7, activation=BNReLU)
l = tf.reshape(l, [-1, 7, 7, 128])
l = Conv2DTranspose('deconv1', l, 64, 4, 2, activation=BNReLU)
l = Conv2DTranspose('deconv2', l, 1, 4, 2, activation=tf.identity)
l = tf.sigmoid(l, name='gen')
return l
@auto_reuse_variable_scope
def discriminator(self, imgs):
with argscope(Conv2D, kernel_size=4, strides=2):
l = (LinearWrap(imgs)
.Conv2D('conv0', 64)
.tf.nn.leaky_relu()
.Conv2D('conv1', 128)
.BatchNorm('bn1')
.tf.nn.leaky_relu()
.FullyConnected('fc1', 1024)
.BatchNorm('bn2')
.tf.nn.leaky_relu()())
logits = FullyConnected('fct', l, 1)
encoder = (LinearWrap(l)
.FullyConnected('fce1', 128)
.BatchNorm('bne')
.tf.nn.leaky_relu()
.FullyConnected('fce-out', DIST_PARAM_DIM)())
return logits, encoder
def build_graph(self, real_sample):
real_sample = tf.expand_dims(real_sample, -1)
# sample the latent code:
zc = shapeless_placeholder(sample_prior(BATCH), 0, name='z_code')
z_noise = shapeless_placeholder(
tf.random_uniform([BATCH, NOISE_DIM], -1, 1), 0, name='z_noise')
z = tf.concat([zc, z_noise], 1, name='z')
with argscope([Conv2D, Conv2DTranspose, FullyConnected],
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02)):
with tf.variable_scope('gen'):
fake_sample = self.generator(z)
fake_sample_viz = tf.cast((fake_sample) * 255.0, tf.uint8, name='viz')
tf.summary.image('gen', fake_sample_viz, max_outputs=30)
# may need to investigate how bn stats should be updated across two discrim
with tf.variable_scope('discrim'):
real_pred, _ = self.discriminator(real_sample)
fake_pred, dist_param = self.discriminator(fake_sample)
"""
Mutual information between x (i.e. zc in this case) and some
information s (the generated samples in this case):
I(x;s) = H(x) - H(x|s)
= H(x) + E[\log P(x|s)]
The distribution from which zc is sampled, in this case, is set to a fixed prior already.
So the first term is a constant.
For the second term, we can maximize its variational lower bound:
E_{x \sim P(x|s)}[\log Q(x|s)]
where Q(x|s) is a proposal distribution to approximate P(x|s).
Here, Q(x|s) is assumed to be a distribution which shares the form
of P, and whose parameters are predicted by the discriminator network.
"""
with tf.name_scope("mutual_information"):
with tf.name_scope('prior_entropy'):
cat, uni = get_distributions(DIST_PRIOR_PARAM[:NUM_CLASS], DIST_PRIOR_PARAM[NUM_CLASS:])
ents = [cat.entropy(name='cat_entropy'), tf.reduce_sum(uni.entropy(), name='uni_entropy')]
entropy = tf.add_n(ents, name='total_entropy')
# Note that the entropy of prior is a constant. The paper mentioned it but didn't use it.
with tf.name_scope('conditional_entropy'):
cond_ents = entropy_from_samples(zc, dist_param)
cond_entropy = tf.add_n(cond_ents, name="total_entropy")
MI = tf.subtract(entropy, cond_entropy, name='mutual_information')
summary.add_moving_summary(entropy, cond_entropy, MI, *cond_ents)
# default GAN objective
self.build_losses(real_pred, fake_pred)
# subtract mutual information for latent factors (we want to maximize them)
self.g_loss = tf.subtract(self.g_loss, MI, name='total_g_loss')
self.d_loss = tf.subtract(self.d_loss, MI, name='total_d_loss')
summary.add_moving_summary(self.g_loss, self.d_loss)
# distinguish between variables of generator and discriminator updates
self.collect_variables()
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=2e-4, dtype=tf.float32, trainable=False)
opt = tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-6)
# generator learns 5 times faster
return optimizer.apply_grad_processors(
opt, [gradproc.ScaleGradient(('gen/.*', 5))])
def get_data():
ds = ConcatData([dataset.Mnist('train'), dataset.Mnist('test')])
ds = BatchData(ds, BATCH)
ds = MapData(ds, lambda dp: [dp[0]]) # only use the image
return ds
def sample(model_path):
pred = OfflinePredictor(PredictConfig(
session_init=SmartInit(model_path),
model=Model(),
input_names=['z_code', 'z_noise'],
output_names=['gen/viz']))
# sample all one-hot encodings (10 times)
z_cat = np.tile(np.eye(10), [10, 1])
# sample continuos variables from -2 to +2 as mentioned in the paper
z_uni = np.linspace(-2.0, 2.0, num=100)
z_uni = z_uni[:, None]
IMG_SIZE = 400
while True:
# only categorical turned on
z_noise = np.random.uniform(-1, 1, (100, NOISE_DIM))
zc = np.concatenate((z_cat, z_uni * 0, z_uni * 0), axis=1)
o = pred(zc, z_noise)[0]
viz1 = viz.stack_patches(o, nr_row=10, nr_col=10)
viz1 = cv2.resize(viz1, (IMG_SIZE, IMG_SIZE))
# show effect of first continous variable with fixed noise
zc = np.concatenate((z_cat, z_uni, z_uni * 0), axis=1)
o = pred(zc, z_noise * 0)[0]
viz2 = viz.stack_patches(o, nr_row=10, nr_col=10)
viz2 = cv2.resize(viz2, (IMG_SIZE, IMG_SIZE))
# show effect of second continous variable with fixed noise
zc = np.concatenate((z_cat, z_uni * 0, z_uni), axis=1)
o = pred(zc, z_noise * 0)[0]
viz3 = viz.stack_patches(o, nr_row=10, nr_col=10)
viz3 = cv2.resize(viz3, (IMG_SIZE, IMG_SIZE))
canvas = viz.stack_patches(
[viz1, viz2, viz3],
nr_row=1, nr_col=3, border=5, bgcolor=(255, 0, 0))
viz.interactive_imshow(canvas)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--sample', action='store_true', help='visualize the space of the 10 latent codes')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.sample:
BATCH = 100
sample(args.load)
else:
logger.auto_set_dir()
GANTrainer(QueueInput(get_data()),
Model()).train_with_defaults(
callbacks=[ModelSaver(keep_checkpoint_every_n_hours=0.1)],
steps_per_epoch=500,
max_epoch=100,
session_init=SmartInit(args.load)
)