forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagenet_utils.py
469 lines (392 loc) · 16.7 KB
/
imagenet_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# File: imagenet_utils.py
import multiprocessing
import numpy as np
import os
from abc import abstractmethod
import cv2
import tqdm
from tensorpack import tfv1 as tf
from tensorpack import ModelDesc
from tensorpack.dataflow import (
AugmentImageComponent, BatchData, MultiThreadMapData,
MultiProcessRunnerZMQ, dataset, imgaug)
from tensorpack.input_source import QueueInput, StagingInput
from tensorpack.models import regularize_cost, l2_regularizer
from tensorpack.predict import FeedfreePredictor, PredictConfig
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.tfutils.optimizer import AccumGradOptimizer
from tensorpack.utils import logger
from tensorpack.utils.stats import RatioCounter
"""
====== DataFlow =======
"""
def fbresnet_augmentor(isTrain):
"""
Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
"""
interpolation = cv2.INTER_CUBIC
# linear seems to have more stable performance.
# but we keep cubic for compatibility with old models
if isTrain:
augmentors = [
imgaug.GoogleNetRandomCropAndResize(interp=interpolation),
imgaug.ToFloat32(), # avoid frequent casting in each color augmentation
# It's OK to remove the following augs if your CPU is not fast enough.
# Removing brightness/contrast/saturation does not have a significant effect on accuracy.
# Removing lighting leads to a tiny drop in accuracy.
imgaug.RandomOrderAug(
[imgaug.BrightnessScale((0.6, 1.4)),
imgaug.Contrast((0.6, 1.4), rgb=False),
imgaug.Saturation(0.4, rgb=False),
# rgb-bgr conversion for the constants copied from fb.resnet.torch
imgaug.Lighting(0.1,
eigval=np.asarray(
[0.2175, 0.0188, 0.0045][::-1]) * 255.0,
eigvec=np.array(
[[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]],
dtype='float32')[::-1, ::-1]
)]),
imgaug.ToUint8(),
imgaug.Flip(horiz=True),
]
else:
augmentors = [
imgaug.ResizeShortestEdge(256, interp=interpolation),
imgaug.CenterCrop((224, 224)),
]
return augmentors
def get_imagenet_dataflow(
datadir, name, batch_size,
augmentors=None, parallel=None):
"""
Args:
augmentors (list[imgaug.Augmentor]): Defaults to `fbresnet_augmentor(isTrain)`
Returns: A DataFlow which produces BGR images and labels.
See explanations in the tutorial:
http://tensorpack.readthedocs.io/tutorial/efficient-dataflow.html
"""
assert name in ['train', 'val', 'test']
isTrain = name == 'train'
assert datadir is not None
if augmentors is None:
augmentors = fbresnet_augmentor(isTrain)
assert isinstance(augmentors, list)
if parallel is None:
parallel = min(40, multiprocessing.cpu_count() // 2) # assuming hyperthreading
if isTrain:
ds = dataset.ILSVRC12(datadir, name, shuffle=True)
ds = AugmentImageComponent(ds, augmentors, copy=False)
if parallel < 16:
logger.warn("DataFlow may become the bottleneck when too few processes are used.")
ds = MultiProcessRunnerZMQ(ds, parallel)
ds = BatchData(ds, batch_size, remainder=False)
else:
ds = dataset.ILSVRC12Files(datadir, name, shuffle=False)
aug = imgaug.AugmentorList(augmentors)
def mapf(dp):
fname, cls = dp
im = cv2.imread(fname, cv2.IMREAD_COLOR)
im = aug.augment(im)
return im, cls
ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
ds = BatchData(ds, batch_size, remainder=True)
ds = MultiProcessRunnerZMQ(ds, 1)
return ds
"""
====== tf.data =======
"""
def get_imagenet_tfdata(datadir, name, batch_size, mapper=None, parallel=None):
"""
Args:
mapper: a symbolic function that takes a tf.string (the raw bytes read from file) and produces a BGR image.
Defaults to `fbresnet_mapper(isTrain)`.
Returns:
A `tf.data.Dataset`. If training, the dataset is infinite.
The dataset contains BGR images and labels.
"""
def get_imglist(dir, name):
"""
Returns:
[(full filename, label)]
"""
dir = os.path.join(dir, name)
meta = dataset.ILSVRCMeta()
imglist = meta.get_image_list(
name,
dataset.ILSVRCMeta.guess_dir_structure(dir))
def _filter(fname):
# png
return 'n02105855_2933.JPEG' in fname
ret = []
for fname, label in imglist:
if _filter(fname):
logger.info("Image {} was filtered out.".format(fname))
continue
fname = os.path.join(dir, fname)
ret.append((fname, label))
return ret
assert name in ['train', 'val', 'test']
assert datadir is not None
isTrain = name == 'train'
if mapper is None:
mapper = fbresnet_mapper(isTrain)
if parallel is None:
parallel = min(40, multiprocessing.cpu_count() // 2) # assuming hyperthreading
imglist = get_imglist(datadir, name)
N = len(imglist)
filenames = tf.constant([k[0] for k in imglist], name='filenames')
labels = tf.constant([k[1] for k in imglist], dtype=tf.int32, name='labels')
ds = tf.data.Dataset.from_tensor_slices((filenames, labels))
if isTrain:
ds = ds.shuffle(N, reshuffle_each_iteration=True).repeat()
ds = ds.apply(
tf.data.experimental.map_and_batch(
lambda fname, label: (mapper(tf.read_file(fname)), label),
batch_size=batch_size,
num_parallel_batches=parallel))
ds = ds.prefetch(100)
return ds
def fbresnet_mapper(isTrain):
"""
Note: compared to fbresnet_augmentor, it
lacks some photometric augmentation that may have a small effect (0.1~0.2%) on accuracy.
"""
JPEG_OPT = {'fancy_upscaling': True, 'dct_method': 'INTEGER_ACCURATE'}
def uint8_resize_bicubic(image, shape):
ret = tf.image.resize_bicubic([image], shape)
return tf.cast(tf.clip_by_value(ret, 0, 255), tf.uint8)[0]
def resize_shortest_edge(image, image_shape, size):
shape = tf.cast(image_shape, tf.float32)
w_greater = tf.greater(image_shape[0], image_shape[1])
shape = tf.cond(w_greater,
lambda: tf.cast([shape[0] / shape[1] * size, size], tf.int32),
lambda: tf.cast([size, shape[1] / shape[0] * size], tf.int32))
return uint8_resize_bicubic(image, shape)
def center_crop(image, size):
image_height = tf.shape(image)[0]
image_width = tf.shape(image)[1]
offset_height = (image_height - size) // 2
offset_width = (image_width - size) // 2
image = tf.slice(image, [offset_height, offset_width, 0], [size, size, -1])
return image
def lighting(image, std, eigval, eigvec):
v = tf.random_normal(shape=[3], stddev=std) * eigval
inc = tf.matmul(eigvec, tf.reshape(v, [3, 1]))
image = tf.cast(tf.cast(image, tf.float32) + tf.reshape(inc, [3]), image.dtype)
return image
def validation_mapper(byte):
image = tf.image.decode_jpeg(
tf.reshape(byte, shape=[]), 3, **JPEG_OPT)
image = resize_shortest_edge(image, tf.shape(image), 256)
image = center_crop(image, 224)
image = tf.reverse(image, axis=[2]) # to BGR
return image
def training_mapper(byte):
jpeg_shape = tf.image.extract_jpeg_shape(byte) # hwc
bbox_begin, bbox_size, distort_bbox = tf.image.sample_distorted_bounding_box(
jpeg_shape,
bounding_boxes=tf.zeros(shape=[0, 0, 4]),
min_object_covered=0,
aspect_ratio_range=[0.75, 1.33],
area_range=[0.08, 1.0],
max_attempts=10,
use_image_if_no_bounding_boxes=True)
is_bad = tf.reduce_sum(tf.cast(tf.equal(bbox_size, jpeg_shape), tf.int32)) >= 2
def good():
offset_y, offset_x, _ = tf.unstack(bbox_begin)
target_height, target_width, _ = tf.unstack(bbox_size)
crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
image = tf.image.decode_and_crop_jpeg(
byte, crop_window, channels=3, **JPEG_OPT)
image = uint8_resize_bicubic(image, [224, 224])
return image
def bad():
image = tf.image.decode_jpeg(
tf.reshape(byte, shape=[]), 3, **JPEG_OPT)
image = resize_shortest_edge(image, jpeg_shape, 224)
image = center_crop(image, 224)
return image
image = tf.cond(is_bad, bad, good)
# TODO other imgproc
image = lighting(image, 0.1,
eigval=np.array([0.2175, 0.0188, 0.0045], dtype='float32') * 255.0,
eigvec=np.array([[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]], dtype='float32'))
image = tf.image.random_flip_left_right(image)
image = tf.reverse(image, axis=[2]) # to BGR
return image
return training_mapper if isTrain else validation_mapper
"""
====== Model & Evaluation =======
"""
def eval_classification(model, sessinit, dataflow):
"""
Eval a classification model on the dataset. It assumes the model inputs are
named "input" and "label", and contains "wrong-top1" and "wrong-top5" in the graph.
"""
pred_config = PredictConfig(
model=model,
session_init=sessinit,
input_names=['input', 'label'],
output_names=['wrong-top1', 'wrong-top5']
)
acc1, acc5 = RatioCounter(), RatioCounter()
# This does not have a visible improvement over naive predictor,
# but will have an improvement if image_dtype is set to float32.
pred = FeedfreePredictor(pred_config, StagingInput(QueueInput(dataflow), device='/gpu:0'))
for _ in tqdm.trange(dataflow.size()):
top1, top5 = pred()
batch_size = top1.shape[0]
acc1.feed(top1.sum(), batch_size)
acc5.feed(top5.sum(), batch_size)
print("Top1 Error: {}".format(acc1.ratio))
print("Top5 Error: {}".format(acc5.ratio))
class ImageNetModel(ModelDesc):
image_shape = 224
"""
uint8 instead of float32 is used as input type to reduce copy overhead.
It might hurt the performance a liiiitle bit.
The pretrained models were trained with float32.
"""
image_dtype = tf.uint8
"""
Either 'NCHW' or 'NHWC'
"""
data_format = 'NCHW'
"""
Whether the image is BGR or RGB. If using DataFlow, then it should be BGR.
"""
image_bgr = True
weight_decay = 1e-4
"""
To apply on normalization parameters, use '.*/W|.*/gamma|.*/beta'
"""
weight_decay_pattern = '.*/W'
"""
Scale the loss, for whatever reasons (e.g., gradient averaging, fp16 training, etc)
"""
loss_scale = 1.
"""
Label smoothing (See tf.losses.softmax_cross_entropy)
"""
label_smoothing = 0.
"""
Accumulate gradients across several steps (by default 1, which means no accumulation across steps).
"""
accum_grad = 1
def inputs(self):
return [tf.TensorSpec([None, self.image_shape, self.image_shape, 3], self.image_dtype, 'input'),
tf.TensorSpec([None], tf.int32, 'label')]
def build_graph(self, image, label):
image = self.image_preprocess(image)
assert self.data_format in ['NCHW', 'NHWC']
if self.data_format == 'NCHW':
image = tf.transpose(image, [0, 3, 1, 2])
logits = self.get_logits(image)
tf.nn.softmax(logits, name='prob')
loss = ImageNetModel.compute_loss_and_error(
logits, label, label_smoothing=self.label_smoothing)
if self.weight_decay > 0:
wd_loss = regularize_cost(self.weight_decay_pattern,
l2_regularizer(self.weight_decay),
name='l2_regularize_loss')
add_moving_summary(loss, wd_loss)
total_cost = tf.add_n([loss, wd_loss], name='cost')
else:
total_cost = tf.identity(loss, name='cost')
add_moving_summary(total_cost)
if self.loss_scale != 1.:
logger.info("Scaling the total loss by {} ...".format(self.loss_scale))
return total_cost * self.loss_scale
else:
return total_cost
@abstractmethod
def get_logits(self, image):
"""
Args:
image: 4D tensor of ``self.input_shape`` in ``self.data_format``
Returns:
Nx#class logits
"""
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=0.1, trainable=False)
tf.summary.scalar('learning_rate-summary', lr)
opt = tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True)
if self.accum_grad != 1:
opt = AccumGradOptimizer(opt, self.accum_grad)
return opt
def image_preprocess(self, image):
with tf.name_scope('image_preprocess'):
if image.dtype.base_dtype != tf.float32:
image = tf.cast(image, tf.float32)
mean = [0.485, 0.456, 0.406] # rgb
std = [0.229, 0.224, 0.225]
if self.image_bgr:
mean = mean[::-1]
std = std[::-1]
image_mean = tf.constant(mean, dtype=tf.float32) * 255.
image_std = tf.constant(std, dtype=tf.float32) * 255.
image = (image - image_mean) / image_std
return image
@staticmethod
def compute_loss_and_error(logits, label, label_smoothing=0.):
if label_smoothing != 0.:
nclass = logits.shape[-1]
label = tf.one_hot(label, nclass) if label.shape.ndims == 1 else label
if label.shape.ndims == 1:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
else:
loss = tf.losses.softmax_cross_entropy(
label, logits, label_smoothing=label_smoothing,
reduction=tf.losses.Reduction.NONE)
loss = tf.reduce_mean(loss, name='xentropy-loss')
def prediction_incorrect(logits, label, topk=1, name='incorrect_vector'):
with tf.name_scope('prediction_incorrect'):
x = tf.logical_not(tf.nn.in_top_k(logits, label, topk))
return tf.cast(x, tf.float32, name=name)
wrong = prediction_incorrect(logits, label, 1, name='wrong-top1')
add_moving_summary(tf.reduce_mean(wrong, name='train-error-top1'))
wrong = prediction_incorrect(logits, label, 5, name='wrong-top5')
add_moving_summary(tf.reduce_mean(wrong, name='train-error-top5'))
return loss
def create_predict_config(self, session_init):
"""
Returns:
a :class:`PredictConfig` to be used for inference.
The predictor will take inputs and return probabilities.
Examples:
pred = OfflinePredictor(model.create_predict_config(SmartInit(args.load)))
prob = pred(NCHW_image)[0] # Nx1000 probabilities
"""
return PredictConfig(model=self, input_names=['input'], output_names=['prob'], session_init=session_init)
if __name__ == '__main__':
import argparse
from tensorpack.dataflow import TestDataSpeed
from tensorpack.tfutils import get_default_sess_config
parser = argparse.ArgumentParser()
parser.add_argument('--data', required=True)
parser.add_argument('--batch', type=int, default=32)
parser.add_argument('--aug', choices=['train', 'val'], default='val')
parser.add_argument('--symbolic', action='store_true')
args = parser.parse_args()
if not args.symbolic:
augs = fbresnet_augmentor(args.aug == 'train')
df = get_imagenet_dataflow(
args.data, 'train', args.batch, augs)
# For val augmentor, Should get >100 it/s (i.e. 3k im/s) here on a decent E5 server.
TestDataSpeed(df).start()
else:
assert args.aug == 'train'
data = get_imagenet_tfdata(args.data, 'train', args.batch)
itr = data.make_initializable_iterator()
dp = itr.get_next()
dpop = tf.group(*dp)
with tf.Session(config=get_default_sess_config()) as sess:
sess.run(itr.initializer)
for _ in tqdm.trange(200):
sess.run(dpop)
for _ in tqdm.trange(5000, smoothing=0.1):
sess.run(dpop)