diff --git a/docs/Users_Guide/appendixC.rst b/docs/Users_Guide/appendixC.rst index 8d57595bed..5925efbb1a 100644 --- a/docs/Users_Guide/appendixC.rst +++ b/docs/Users_Guide/appendixC.rst @@ -785,13 +785,32 @@ The following statistics are computed using the magnitude of the vectors formed \text{OGMAG} = \text{Mean}(|| \nabla o ||) = \frac{1}{n} \sum_{i=1}^n \sqrt{\nabla {o_x}_i^2 + \nabla {o_y}_i^2} - \text{MAG_RMSE} = \sqrt{ \frac{1}{n} \sum_{i=1}^n {(|| \nabla f_i || - || \nabla o_i ||)}^2 } +.. only:: latex + + .. math:: + + \text{MAG\_RMSE} = \sqrt{ \frac{1}{n} \sum_{i=1}^n {(|| \nabla f_i || - || \nabla o_i ||)}^2 } + +.. only:: html + + .. math:: + + \text{MAG_RMSE} = \sqrt{ \frac{1}{n} \sum_{i=1}^n {(|| \nabla f_i || - || \nabla o_i ||)}^2 } Laplace RMSE is very similar to gradient RMSE, but instead of taking the magnitude of the gradient vector at each point, we compute the divergence of the gradient. -.. math:: - \text{LAPLACE_RMSE} = \sqrt{ \frac{1}{n} \sum_{i=1}^n { ((\nabla {f_x}_i + \nabla {f_y}_i) - (\nabla {o_x}_i + \nabla {o_y}_i))^2 }} +.. only:: latex + + .. math:: + + \text{LAPLACE\_RMSE} = \sqrt{ \frac{1}{n} \sum_{i=1}^n { ((\nabla {f_x}_i + \nabla {f_y}_i) - (\nabla {o_x}_i + \nabla {o_y}_i))^2 }} + +.. only:: html + + .. math:: + + \text{LAPLACE_RMSE} = \sqrt{ \frac{1}{n} \sum_{i=1}^n { ((\nabla {f_x}_i + \nabla {f_y}_i) - (\nabla {o_x}_i + \nabla {o_y}_i))^2 }} MET Verification Measures for Probabilistic Forecasts =====================================================