-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreference.py
676 lines (570 loc) · 25.7 KB
/
reference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# -*- coding:utf-8 -*-
from __future__ import division
import math
import time
import pandas as pd
from pandas.compat import StringIO
import lxml.html
from lxml import etree
import re
import json
from gugu.utility import Utility
from gugu.base import Base, cf
class Reference(Base):
def distriPlan(self, year=2015, top=25, retry=3, pause=0.001):
"""
获取分配预案数据
Parameters
--------
year:年份
top:取最新n条数据,默认取最近公布的25条
retry : int, 默认 3
如遇网络等问题重复执行的次数
pause : int, 默认 0.001
重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题
returns
-------
DataFrame or List: [{'code', 'name', ...}, ...]
code:股票代码
name:股票名称
year:分配年份
report_date:公布日期
divi:分红金额(每10股)
shares:转增和送股数(每10股)
"""
self._data = pd.DataFrame()
if top == 'all':
self._writeHead()
self._data, pages = self.__handleDistriPlan(year, 0, retry, pause)
for i in range(1, int(pages)):
self._data = self._data.append(self.__handleDistriPlan(year, i, retry, pause), ignore_index=True)
return self._result()
elif top <= 25:
self._data, pages = self.__handleDistriPlan(year, 0, retry, pause)
self._data = self._data.head(top)
return self._result()
else:
if isinstance(top, int):
self._writeHead()
allPages = int(math.ceil(top/25))
self._data, pages = self.__handleDistriPlan(year, 0, retry, pause)
pages = min(allPages, int(pages))
for i in range(1, pages):
self._data = self._data.append(self.__handleDistriPlan(year, i, retry, pause), ignore_index=True)
self._data = self._data.head(top)
return self._result()
else:
print(cf.TOP_PARAS_MSG)
def __handleDistriPlan(self, year, pageNo, retry, pause):
for _ in range(retry):
time.sleep(pause)
try:
if pageNo > 0:
self._writeConsole()
# http://quotes.money.163.com/data/caibao/fpyg.html?reportdate=2018&sort=declaredate&order=desc&page=0
html = lxml.html.parse(cf.DP_163_URL % (year, pageNo))
res = html.xpath('//table[@class=\"fn_cm_table\"]/tr')
if self._PY3:
sarr = [etree.tostring(node).decode('utf-8') for node in res]
else:
sarr = [etree.tostring(node) for node in res]
sarr = ''.join(sarr)
sarr = '<table>%s</table>' % sarr
df = pd.read_html(sarr)[0]
df = df.drop(0, axis=1)
df.columns = cf.DP_163_COLS
df['divi'] = df['plan'].map(self.__bonus)
df['shares'] = df['plan'].map(self.__gift)
df = df.drop('plan', axis=1)
df['code'] = df['code'].astype(object)
df['code'] = df['code'].map(lambda x : str(x).zfill(6))
pages = []
if pageNo == 0:
page = html.xpath('//div[@class=\"mod_pages\"]/a')
if len(page)>1:
asr = page[len(page)-2]
pages = asr.xpath('text()')
except Exception as e:
print(e)
else:
if pageNo == 0:
return df, pages[0] if len(pages)>0 else 0
else:
return df
raise IOError(cf.NETWORK_URL_ERROR_MSG)
def __bonus(self, x):
if self._PY3:
reg = re.compile(r'分红(.*?)元', re.UNICODE)
res = reg.findall(x)
return 0 if len(res)<1 else float(res[0])
else:
if isinstance(x, unicode):
s1 = unicode('分红','utf-8')
s2 = unicode('元','utf-8')
reg = re.compile(r'%s(.*?)%s'%(s1, s2), re.UNICODE)
res = reg.findall(x)
return 0 if len(res)<1 else float(res[0])
else:
return 0
def __gift(self, x):
if self._PY3:
reg1 = re.compile(r'转增(.*?)股', re.UNICODE)
reg2 = re.compile(r'送股(.*?)股', re.UNICODE)
res1 = reg1.findall(x)
res2 = reg2.findall(x)
res1 = 0 if len(res1)<1 else float(res1[0])
res2 = 0 if len(res2)<1 else float(res2[0])
return res1 + res2
else:
if isinstance(x, unicode):
s1 = unicode('转增','utf-8')
s2 = unicode('送股','utf-8')
s3 = unicode('股','utf-8')
reg1 = re.compile(r'%s(.*?)%s'%(s1, s3), re.UNICODE)
reg2 = re.compile(r'%s(.*?)%s'%(s2, s3), re.UNICODE)
res1 = reg1.findall(x)
res2 = reg2.findall(x)
res1 = 0 if len(res1)<1 else float(res1[0])
res2 = 0 if len(res2)<1 else float(res2[0])
return res1 + res2
else:
return 0
def forecast(self, year, quarter, retry=3, pause=0.001):
"""
获取业绩预告数据
Parameters
--------
year:int 年度 e.g:2014
quarter:int 季度 :1、2、3、4,只能输入这4个季度
说明:由于是从网站获取的数据,需要一页页抓取,速度取决于您当前网络速度
retry : int, 默认 3
如遇网络等问题重复执行的次数
pause : int, 默认 0.001
重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题
Return
--------
DataFrame or List: [{'code':, 'name':, ...}, ...]
code,代码
name,名称
type,业绩变动类型【预增、预亏等】
report_date,发布日期
pre_eps,上年同期每股收益
range,业绩变动范围
"""
self._data = pd.DataFrame()
if Utility.checkQuarter(year, quarter) is True:
self._writeHead()
self._data = self.__handleForecast(year, quarter, 1, pd.DataFrame(), retry, pause)
self._data = pd.DataFrame(self._data, columns=cf.FORECAST_COLS)
self._data['code'] = self._data['code'].map(lambda x: str(x).zfill(6))
return self._result()
def __handleForecast(self, year, quarter, pageNo, dataArr, retry, pause):
self._writeConsole()
for _ in range(retry):
time.sleep(pause)
try:
# http://vip.stock.finance.sina.com.cn/q/go.php/vFinanceAnalyze/kind/performance/index.phtml?s_i=&s_a=&s_c=&s_type=&reportdate=2018&quarter=3&p=1&num=60
request = self._session.get( cf.FORECAST_URL%( year, quarter, pageNo, cf.PAGE_NUM[1]), timeout=10 )
request.encoding = 'gbk'
text = request.text.replace('--', '')
html = lxml.html.parse(StringIO(text))
res = html.xpath("//table[@class=\"list_table\"]/tr")
if self._PY3:
sarr = [etree.tostring(node).decode('utf-8') for node in res]
else:
sarr = [etree.tostring(node) for node in res]
sarr = ''.join(sarr)
sarr = '<table>%s</table>'%sarr
df = pd.read_html(sarr)[0]
df = df.drop([4, 5, 8], axis=1)
df.columns = cf.FORECAST_COLS
dataArr = dataArr.append(df, ignore_index=True)
nextPage = html.xpath('//div[@class=\"pages\"]/a[last()]/@onclick')
if len(nextPage)>0:
pageNo = re.findall(r'\d+',nextPage[0])[0]
return self.__handleForecast(year, quarter, pageNo, dataArr, retry, pause)
else:
return dataArr
except Exception as e:
print(e)
raise IOError(cf.NETWORK_URL_ERROR_MSG)
def restrictedLift(self, year=None, month=None, retry=3, pause=0.001):
"""
获取限售股解禁数据
Parameters
--------
year:年份,默认为当前年
month:解禁月份,默认为当前月
retry : int, 默认 3
如遇网络等问题重复执行的次数
pause : int, 默认 0
重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题
Return
------
DataFrame or List: [{'code':, 'name':, ...}, ...]
code:股票代码
name:名称
date:解禁日期
count:解禁数量(万股)
ratio:占总盘比率
"""
self._data = pd.DataFrame()
year = Utility.getYear() if year is None else year
month = Utility.getMonth() if month is None else month
for _ in range(retry):
time.sleep(pause)
try:
# http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx?type=FD&sty=BST&st=3&sr=true&fd=2019&stat=1
request = self._session.get( cf.RL_URL % (year, month), timeout = 10 )
if self._PY3:
request.encoding = 'utf-8'
lines = request.text
except Exception as e:
print(e)
else:
da = lines[3:len(lines)-3]
list = []
for row in da.split('","'):
list.append([data for data in row.split(',')])
self._data = pd.DataFrame(list)
self._data = self._data[[1, 3, 4, 5, 6]]
for col in [5, 6]:
self._data[col] = self._data[col].astype(float)
self._data[5] = self._data[5]/10000
self._data[6] = self._data[6]*100
self._data[5] = self._data[5].map(cf.FORMAT)
self._data[6] = self._data[6].map(cf.FORMAT)
self._data.columns = cf.RL_COLS
return self._result()
raise IOError(cf.NETWORK_URL_ERROR_MSG)
def fundHoldings(self, year, quarter, retry=3, pause=0.001):
"""
获取基金持股数据
Parameters
--------
year:年份e.g 2014
quarter:季度(只能输入1,2,3,4这个四个数字)
retry : int, 默认 3
如遇网络等问题重复执行的次数
pause : int, 默认 0
重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题
Return
------
DataFrame or List: [{'code':, 'name':, ...}, ...]
code:股票代码
name:名称
date:报告日期
nums:基金家数
nlast:与上期相比(增加或减少了)
count:基金持股数(万股)
clast:与上期相比
amount:基金持股市值
ratio:占流通盘比率
"""
self._data = pd.DataFrame()
start, end = cf.QUARTS_DIC[str(quarter)]
if quarter == 1:
start = start % str(year-1)
end = end % year
else:
start, end = start % year, end % year
self._writeHead()
self._data, pages = self.__handleFoundHoldings(start, end, 0, retry, pause)
for idx in range(1, pages):
self._data = self._data.append(self.__handleFoundHoldings(start, end, idx, retry, pause), ignore_index=True)
return self._result()
def __handleFoundHoldings(self, start, end, pageNo, retry, pause):
for _ in range(retry):
time.sleep(pause)
if pageNo>0:
self._writeConsole()
try:
# http://quotes.money.163.com/hs/marketdata/service/jjcgph.php?host=/hs/marketdata/service/jjcgph.php&page=0&query=start:2018-06-30;end:2018-09-30&order=desc&count=60&type=query&req=73259
request = self._session.get( cf.FUND_HOLDS_URL % (pageNo, start, end, Utility.random(5)), timeout=10 )
if self._PY3:
request.encoding = 'utf-8'
lines = request.text
lines = lines.replace('--', '0')
lines = json.loads(lines)
data = lines['list']
df = pd.DataFrame(data)
df = df.drop(['CODE', 'ESYMBOL', 'EXCHANGE', 'NAME', 'RN', 'SHANGQIGUSHU', 'SHANGQISHIZHI', 'SHANGQISHULIANG'], axis=1)
for col in ['GUSHU', 'GUSHUBIJIAO', 'SHIZHI', 'SCSTC27']:
df[col] = df[col].astype(float)
df['SCSTC27'] = df['SCSTC27']*100
df['GUSHU'] = df['GUSHU']/10000
df['GUSHUBIJIAO'] = df['GUSHUBIJIAO']/10000
df['SHIZHI'] = df['SHIZHI']/10000
df['GUSHU'] = df['GUSHU'].map(cf.FORMAT)
df['GUSHUBIJIAO'] = df['GUSHUBIJIAO'].map(cf.FORMAT)
df['SHIZHI'] = df['SHIZHI'].map(cf.FORMAT)
df['SCSTC27'] = df['SCSTC27'].map(cf.FORMAT)
df.columns = cf.FUND_HOLDS_COLS
df = df[['code', 'name', 'date', 'nums', 'nlast', 'count',
'clast', 'amount', 'ratio']]
except Exception as e:
print(e)
else:
if pageNo == 0:
return df, int(lines['pagecount'])
else:
return df
raise IOError(cf.NETWORK_URL_ERROR_MSG)
def ipo(self, retry=3, pause=0.001):
"""
获取新股上市数据
Parameters
--------
retry : int, 默认 3
如遇网络等问题重复执行的次数
pause : int, 默认 0
重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题
Return
------
DataFrame or List: [{'code':, 'name':, ...}, ...]
code:股票代码
xcode:申购代码
name:名称
ipo_date:上网发行日期
issue_date:上市日期
amount:发行数量(万股)
markets:上网发行数量(万股)
price:发行价格(元)
pe:发行市盈率
limit:个人申购上限(万股)
funds:募集资金(亿元)
ballot:网上中签率(%)
"""
self._data = pd.DataFrame()
self._writeHead()
self._data = self.__handleIpo(self._data, 1, retry, pause)
return self._result()
def __handleIpo(self, data, pageNo, retry, pause):
self._writeConsole()
for _ in range(retry):
time.sleep(pause)
try:
# http://vip.stock.finance.sina.com.cn/corp/view/vRPD_NewStockIssue.php?page=1&cngem=0&orderBy=NetDate&orderType=desc
html = lxml.html.parse(cf.NEW_STOCKS_URL % pageNo)
res = html.xpath('//table[@id=\"NewStockTable\"]/tr')
if not res:
return data
if self._PY3:
sarr = [etree.tostring(node).decode('utf-8') for node in res]
else:
sarr = [etree.tostring(node) for node in res]
sarr = ''.join(sarr)
sarr = sarr.replace('<font color="red">*</font>', '')
sarr = '<table>%s</table>'%sarr
df = pd.read_html(StringIO(sarr), skiprows=[0, 1])[0]
df = df.drop([df.columns[idx] for idx in [12, 13, 14, 15]], axis=1)
df.columns = cf.NEW_STOCKS_COLS
df['code'] = df['code'].map(lambda x : str(x).zfill(6))
df['xcode'] = df['xcode'].map(lambda x : str(x).zfill(6))
res = html.xpath('//table[@class=\"table2\"]/tr[1]/td[1]/a/text()')
tag = '下一页' if self._PY3 else unicode('下一页', 'utf-8')
hasNext = True if tag in res else False
data = data.append(df, ignore_index=True)
pageNo += 1
if hasNext:
data = self.__handleIpo(data, pageNo, retry, pause)
except Exception as ex:
print(ex)
else:
return data
def shMargins(self, retry=3, pause=0.001):
"""
沪市融资融券历史数据
Parameters
--------
retry : int, 默认 3
如遇网络等问题重复执行的次数
pause : int, 默认 0
重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题
Return
------
DataFrame or List: [{'date':, 'close':, ...}, ...]
date: 日期
close: 上证指数收盘点数
zdf: 上证指数收盘涨跌幅(%)
rzye: 融资余额(元)
rzyezb: 融资余额占比(%)
rzmre: 融资买入额(元)
rzche: 融资偿还额(元)
rzjmre: 融资净买入额(元)
rqye: 融券余额(元)
rqyl: 融券余量(股)
rqmcl: 融券卖出量(股)
rqchl: 融券偿还量(股)
rqjmcl: 融券净卖出量(股)
rzrqye: 融资融券余额(元)
rzrqyecz: 融资融券余额差值(元)
"""
self._data = pd.DataFrame()
self._writeHead()
self._data = self.__handleMargins(self._data, 1, 'SH', Utility.random(8), cf.MAR_COLS, retry, pause)
self._data.rename(columns={'tdate':'date'}, inplace=True)
return self._result()
def szMargins(self, retry=3, pause=0.001):
"""
深市融资融券历史数据
Parameters
--------
retry : int, 默认 3
如遇网络等问题重复执行的次数
pause : int, 默认 0
重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题
Return
------
DataFrame or List: [{'date':, 'close':, ...}, ...]
date: 日期
close: 深证成指收盘点数
zdf: 深证成指收盘涨跌幅(%)
rzye: 融资余额(元)
rzyezb: 融资余额占比(%)
rzmre: 融资买入额(元)
rzche: 融资偿还额(元)
rzjmre: 融资净买入额(元)
rqye: 融券余额(元)
rqyl: 融券余量(股)
rqmcl: 融券卖出量(股)
rqchl: 融券偿还量(股)
rqjmcl: 融券净卖出量(股)
rzrqye: 融资融券余额(元)
rzrqyecz: 融资融券余额差值(元)
"""
self._data = pd.DataFrame()
self._writeHead()
self._data = self.__handleMargins(self._data, 1, 'SZ', Utility.random(8), cf.MAR_COLS, retry, pause)
self._data.rename(columns={'tdate':'date'}, inplace=True)
return self._result()
def __handleMargins(self, dataArr, page, market, randInt, column, retry, pause):
self._writeConsole()
for _ in range(retry):
time.sleep(pause)
try:
request = self._session.get( cf.MAR_URL % (page, market, randInt) )
text = request.text.split('=')[1]
text = text.replace('{pages:', '{"pages":').replace(',data:', ',"data":').replace('T00:00:00', '').replace('"-"', '0')
dataDict = Utility.str2Dict(text)
data = dataDict['data']
df = pd.DataFrame(data, columns=column)
df['close'] = df['close'].map(cf.FORMAT)
df['rzyezb'] = df['rzyezb'].astype(float)
dataArr = dataArr.append(df, ignore_index=True)
if page < dataDict['pages']:
dataArr = self.__handleMargins(dataArr, page+1, market, randInt, column, retry, pause)
except Exception as e:
print(e)
else:
return dataArr
raise IOError(cf.NETWORK_URL_ERROR_MSG)
def marginDetailsAllByDate(self, date, retry=3, pause=0.001):
"""
按日期获取两市融资融券明细列表
Parameters
--------
date : string
选择日期 format:YYYY-MM-DD
retry : int, 默认 3
如遇网络等问题重复执行的次数
pause : int, 默认 0
重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题
Return
------
DataFrame or List: [{'code':, 'name':, ...}, ...]
code: 股票代码
name: 名称
rzye: 当日融资余额(元)
rzyezb: 当日融资余额占比(%)
rzmre: 当日融资买入额(元)
rzche: 当日融资偿还额(元)
rzjmre: 当日融资净买入额(元)
rqye: 当日融券余额(元)
rqyl: 当日融券余量(股)
rqmcl: 当日融券卖出量(股)
rqchl: 当日融券偿还量(股)
rqjmcl: 当日融券净卖出量(股)
rzrqye: 当日融资融券余额(元)
rzrqyecz: 当日融资融券余额差值(元)
"""
self._data = pd.DataFrame()
self._writeHead()
self._data = self.__handleMarginDetailsAllByDate(self._data, date, 1, Utility.random(8), retry, pause)
self._data.rename(columns={'scode':'code', 'sname':'name'}, inplace=True)
return self._result()
def __handleMarginDetailsAllByDate(self, dataArr, date, page, randInt, retry, pause):
self._writeConsole()
for _ in range(retry):
time.sleep(pause)
try:
request = self._session.get(cf.MAR_BOTH_DETAIL % (date, page, randInt))
text = request.text.split('=')[1]
text = text.replace('{pages:', '{"pages":').replace(',data:', ',"data":').replace('"-"', '0')
dataDict = Utility.str2Dict(text)
data = dataDict['data']
df = pd.DataFrame(data, columns=cf.MAR_DET_All_COLS)
df['date'] = date
df['rzyezb'] = df['rzyezb'].astype(float)
dataArr = dataArr.append(df, ignore_index=True)
if page < dataDict['pages']:
dataArr = self.__handleMarginDetailsAllByDate(dataArr, date, page+1, randInt, retry, pause)
except Exception as e:
print(e)
else:
return dataArr
raise IOError(cf.NETWORK_URL_ERROR_MSG)
def marginTotal(self, retry=3, pause=0.001):
"""
两市合计融资融券历史数据
Parameters
--------
retry : int, 默认 3
如遇网络等问题重复执行的次数
pause : int, 默认 0
重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题
Return
------
DataFrame or List: [{'date':, 'close':, ...}, ...]
date: 日期
close: 沪深300收盘点数
zdf: 沪深300收盘涨跌幅(%)
rzye: 融资余额(元)
rzyezb: 融资余额占比(%)
rzmre: 融资买入额(元)
rzche: 融资偿还额(元)
rzjmre: 融资净买入额(元)
rqye: 融券余额(元)
rqyl: 融券余量(股)
rqmcl: 融券卖出量(股)
rqchl: 融券偿还量(股)
rqjmcl: 融券净卖出量(股)
rzrqye: 融资融券余额(元)
rzrqyecz: 融资融券余额差值(元)
"""
self._data = pd.DataFrame()
self._writeHead()
self._data = self.__handleMarginTotal(self._data, 1, Utility.random(8), retry, pause)
self._data.rename(columns={'tdate':'date'}, inplace=True)
return self._result()
def __handleMarginTotal(self, dataArr, page, randInt, retry, pause):
self._writeConsole()
for _ in range(retry):
time.sleep(pause)
try:
request = self._session.get(cf.MAR_TOTAL_URL % (page, randInt), timeout=10)
text = request.text.split('=')[1]
text = text.replace('{pages:', '{"pages":').replace(',data:', ',"data":').replace('T00:00:00', '').replace('"-"', '0')
dataDict = Utility.str2Dict(text)
data = dataDict['data']
df = pd.DataFrame(data, columns=cf.MAR_TOTAL_COLS)
df['close'] = df['close'].map(cf.FORMAT)
df['rzyezb'] = df['rzyezb'].astype(float)
dataArr = dataArr.append(df, ignore_index=True)
if page < dataDict['pages']:
dataArr = self.__handleMarginTotal(dataArr, page+1, randInt, retry, pause)
except Exception as e:
print(e)
else:
return dataArr
raise IOError(cf.NETWORK_URL_ERROR_MSG)