diff --git a/performance/fdb_slice_many_numbers_timeseries.py b/performance/fdb_slice_many_numbers_timeseries.py index ca0b9173..662b5cc3 100644 --- a/performance/fdb_slice_many_numbers_timeseries.py +++ b/performance/fdb_slice_many_numbers_timeseries.py @@ -3,14 +3,12 @@ import pandas as pd import pygribjump as gj -from polytope_feature.datacube.backends.fdb import FDBDatacube from polytope_feature.polytope import Polytope, Request from polytope_feature.shapes import All, Point, Select time1 = time.time() # Create a dataarray with 3 labelled axes using different index types -# config = {"class": "od", "expver": "0001", "levtype": "sfc", "type": "pf"} options = { "axis_config": [ {"axis_name": "step", "transformations": [{"name": "type_change", "type": "int"}]}, @@ -63,7 +61,6 @@ Select("class", ["od"]), Select("stream", ["enfo"]), Select("type", ["pf"]), - # Select("latitude", [0.035149384216], method="surrounding"), Point(["latitude", "longitude"], [[0.04, 0]], method="surrounding"), All("number"), ) diff --git a/polytope_feature/version.py b/polytope_feature/version.py index 6e3c058c..c916e680 100644 --- a/polytope_feature/version.py +++ b/polytope_feature/version.py @@ -1 +1 @@ -__version__ = "1.0.20" +__version__ = "1.0.21" diff --git a/readme.md b/readme.md index 4a6eed36..3db6544d 100644 --- a/readme.md +++ b/readme.md @@ -180,6 +180,10 @@ If this software is useful in your work, please consider citing our [paper](http > Leuridan, M., Hawkes, J., Smart, S., Danovaro, E., and Quintino, T., “Polytope: An Algorithm for Efficient Feature Extraction on Hypercubes”, arXiv e-prints, 2023. doi:10.48550/arXiv.2306.11553. +Other papers in preparation include: + +> Leuridan, M., Bradley, C., Hawkes, J., Quintino, T., and Schultz, M., "Performance Analysis of an Efficient Algorithm for Feature Extraction from Large Scale Meteorological Data Stores". + ## Acknowledgements Past and current funding and support for **Polytope** is listed in the adjoining [Acknowledgements](./ACKNOWLEDGEMENTS.rst).