-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathensemble.py
143 lines (107 loc) · 3.82 KB
/
ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import subprocess
from absl import app, flags, logging
FLAGS = flags.FLAGS
flags.DEFINE_string(
"metrics_file",
default=None,
help=(
"input metrics file that stores baseline statistics and (examples, nn"
" abstracts)"
),
)
flags.DEFINE_string(
"baseline_metrics_file",
default=None,
help="output file for experiment results",
)
flags.DEFINE_string(
"fact_to_ids_file",
default=None,
help="output file for experiment results",
)
flags.DEFINE_string(
"baseline_nn_file", default=None, help="nn for baseline file"
)
flags.DEFINE_string(
"checkpoint_folders",
default=None,
help="last checkpoint of the model to evaluate",
)
flags.DEFINE_integer(
"beam_size", default=3, help="beam size for accuracy calculations"
)
flags.DEFINE_integer("seed", default=10, help="seed")
flags.DEFINE_float(
"baseline_reweight",
default=-1,
help="ensemble with reweighted baseline scores",
)
flags.DEFINE_string("data_root", default="LAMA/data/", help="data folder")
flags.DEFINE_string(
"lama_folder",
default="LAMA/data/TREx_lama_templates_v3",
help="lama data folder name; should be inside data folder",
)
flags.DEFINE_string(
"exp_folder",
default="LAMA/data/metrics/reranker/unfiltered",
help="name for exp folder under data root",
)
flags.DEFINE_string(
"load_exp_folder",
default=None,
help="name for exp folder to load the splits from",
)
flags.DEFINE_string("gpus_to_use", default=None, help="coma seperated gpu ids")
def main(_):
# checkpoint_folders = FLAGS.checkpoint_folders.split(",")
gpus = list(map(int, FLAGS.gpus_to_use.split(",")))
gpus = {id: [] for id in gpus}
print(f"gpus: {gpus}")
header_cmd = (
'eval "$(conda shell.bash hook)";conda activate transformers;export'
" PYTHONHASHSEED=0;"
)
for i in range(3):
exp_folder = FLAGS.load_exp_folder
output_metric_folder = os.path.join(exp_folder, f"seed_{i}")
for subset in ("learned",):
baseline_prefix = os.path.join(output_metric_folder, f"{subset}/")
baseline_eval_file = os.path.join(baseline_prefix, "eval_detailed")
for eos in ("no_eos",):
for accum in ("accum",):
ckpt_prefix = os.path.join(
FLAGS.load_exp_folder,
f"seed_{i}",
subset,
f"{eos}_{accum}/",
)
ckpt_log_prefix = os.path.join(ckpt_prefix, "logs/")
ckpt_scores_prefix = os.path.join(ckpt_prefix, "scores/")
ckpt_prefix = os.path.join(
FLAGS.exp_folder,
f"seed_{i}",
subset,
f"{eos}_{accum}/",
)
post_params = (
f"--metrics_file={baseline_eval_file}.pickle "
f"--seed={i} "
f"--scores_folder={ckpt_scores_prefix} "
"--exp_type=layers "
f"--output_metrics_file={ckpt_prefix}/results_ensemble "
f"--alpha {FLAGS.baseline_reweight} "
"--reweight_type arithmetic "
"--disable_tqdm "
)
ckpt_log_prefix = os.path.join(ckpt_prefix, "logs/")
post_cmd = (
f"python -u eval/reranker_post.py {post_params} >"
f"{ckpt_log_prefix}/post.log 2> "
f"{ckpt_log_prefix}/post.err;"
)
logging.info(f"RUN: {post_cmd}")
subprocess.Popen(header_cmd + post_cmd, shell=True)
if __name__ == "__main__":
app.run(main)