forked from aburkov/theMLbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdf.py
62 lines (46 loc) · 1.7 KB
/
pdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
import math
import matplotlib
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
matplotlib.rcParams.update({'font.size': 18})
from sklearn.kernel_ridge import KernelRidge
mu1, sigma1 = 3, 0.4
mu2, sigma2 = 5, 0.6
def sample_points():
s1 = np.random.normal(mu1, sigma1, 20)
s2 = np.random.normal(mu2, sigma2, 20)
return list(s1) + list(s2)
# generate points used to plot
x_plot = np.linspace(0, 8, 100)
# generate points and keep a subset of them
x = sample_points()
lw = 2
def kernel(x1, x2, b = 2):
z = (x1 - x2) / b
return (1/math.sqrt(2 * 3.14)) * np.exp(-z**2/2)
def fb(x, data, b):
return 1/(len(data)*b) * sum([kernel(x, xi, b) for xi in data])
def sum_pdf(x):
result = []
for i in range(len(x)):
result.append((sp.stats.norm.pdf(x, mu1, sigma1)[i] + sp.stats.norm.pdf(x, mu2, sigma2)[i])/2)
return result
plt.figure(0)
axes = plt.gca()
axes.set_ylim([0,0.6])
plt.plot(x_plot,sum_pdf(x_plot), color='red')
section = np.arange(0, 8, 1/20.)
plt.fill_between(section,sum_pdf(section), color='#e6eeff')
plt.text(3.2, 0.04, "Area = 1.0", fontsize=18)
plt.xlabel("$x$")
plt.ylabel("$pdf$")
#plt.legend(loc='lower left')
fig1 = plt.gcf()
fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.12, hspace = 0, wspace = 0)
fig1.savefig('../../Illustrations/pdf.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0.1)
fig1.savefig('../../Illustrations/pdf.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0.1)
fig1.savefig('../../Illustrations/pdf.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0.1)
plt.show()