-
-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathdata_loader.py
155 lines (126 loc) · 4.85 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
""" "This module contains a video loader."""
import logging
import os
import sys
from typing import List, Tuple, Union
import numpy as np
from torch import Tensor
from torch.utils import data
from torchvision.datasets.video_utils import VideoClips
class VideoIter(data.Dataset):
"""This class implements a loader for videos."""
def __init__(
self,
clip_length,
frame_stride,
dataset_path=None,
video_transform=None,
return_label=False,
) -> None:
super().__init__()
# video clip properties
self.frames_stride = frame_stride
self.total_clip_length_in_frames = clip_length * frame_stride
self.video_transform = video_transform
# IO
self.dataset_path = dataset_path
self.video_list = self._get_video_list(dataset_path=self.dataset_path)
self.return_label = return_label
# data loading
self.video_clips = VideoClips(
video_paths=self.video_list,
clip_length_in_frames=self.total_clip_length_in_frames,
frames_between_clips=self.total_clip_length_in_frames,
)
@property
def video_count(self) -> int:
"""Retrieve the number of the videos in the dataset."""
return len(self.video_list)
def getitem_from_raw_video(
self, idx: int
) -> Union[Tuple[Tensor, int, str, str], Tuple[Tensor, int, int, str, str]]:
"""Fetch a sample from the dataset.
Args:
idx (int): Index of the sample the retrieve.
Returns:
Tuple[Tensor, int, str, str]: Video clip, clip idx in the video, directory name, and file
Tuple[Tensor, int, int, str, str]: Video clip, label, clip idx in the video, directory name, and file
"""
video, _, _, _ = self.video_clips.get_clip(idx)
video_idx, clip_idx = self.video_clips.get_clip_location(idx)
video_path = self.video_clips.video_paths[video_idx]
in_clip_frames = list(
range(0, self.total_clip_length_in_frames, self.frames_stride)
)
video = video[in_clip_frames]
if self.video_transform is not None:
video = self.video_transform(video)
dir, file = video_path.split(os.sep)[-2:]
file = file.split(".")[0]
if self.return_label:
label = 0 if "Normal" in video_path else 1
return video, label, clip_idx, dir, file
return video, clip_idx, dir, file
def __len__(self) -> int:
return len(self.video_clips)
def __getitem__(self, index: int):
succ = False
while not succ:
try:
batch = self.getitem_from_raw_video(index)
succ = True
except Exception as e:
index = np.random.choice(range(0, self.__len__()))
trace_back = sys.exc_info()[2]
if trace_back is not None:
line = str(trace_back.tb_lineno)
else:
line = "no-line"
# pylint: disable=line-too-long
logging.warning(
f"VideoIter:: ERROR (line number {line}) !! (Force using another index:\n{index})\n{e}"
)
return batch
def _get_video_list(self, dataset_path: str) -> List[str]:
"""Fetche all videos in a directory and sub-directories.
Args:
dataset_path (str): A string that represents the directory of the dataset.
Raises:
FileNotFoundError: The directory could not be found in the provided path.
Returns:
List[str]
"""
if not os.path.exists(dataset_path):
raise FileNotFoundError(f"VideoIter:: failed to locate: `{dataset_path}'")
vid_list = []
for path, _, files in os.walk(dataset_path):
for name in files:
if "mp4" not in name:
continue
vid_list.append(os.path.join(path, name))
logging.info(f"Found {len(vid_list)} video files in {dataset_path}")
return vid_list
class SingleVideoIter(VideoIter):
"""Loader for a single video."""
def __init__(
self,
clip_length,
frame_stride,
video_path,
video_transform=None,
return_label=False,
) -> None:
super().__init__(
clip_length, frame_stride, video_path, video_transform, return_label
)
def _get_video_list(self, dataset_path: str) -> List[str]:
return [dataset_path]
def __getitem__(self, idx: int) -> Tensor:
video, _, _, _ = self.video_clips.get_clip(idx)
in_clip_frames = list(
range(0, self.total_clip_length_in_frames, self.frames_stride)
)
video = video[in_clip_frames]
if self.video_transform is not None:
video = self.video_transform(video)
return video