-
-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathfeatures_loader.py
201 lines (168 loc) · 6.44 KB
/
features_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
""" "This module contains a video feature loader."""
import logging
import os
from typing import List, Tuple
import numpy as np
import torch
from torch import Tensor
from torch.utils import data
from feature_extractor import read_features
class FeaturesLoader:
"""Loads video features that are stored as text files."""
def __init__(
self,
features_path: str,
annotation_path: str,
bucket_size: int = 30,
iterations: int = 20000,
) -> None:
"""
Args:
features_path: Path to the directory that contains the features in text files
annotation_path: Path to the annotation file
bucket_size: Size of each bucket
iterations: How many iterations the loader should perform
"""
super().__init__()
self._features_path = features_path
self._bucket_size = bucket_size
# load video list
(
self.features_list_normal,
self.features_list_anomaly,
) = FeaturesLoader._get_features_list(
features_path=self._features_path, annotation_path=annotation_path
)
self._iterations = iterations
self._features_cache = {}
self._i = 0
def __len__(self) -> int:
return self._iterations
def __getitem__(self, index: int) -> Tuple[Tensor, Tensor]:
if self._i == len(self):
self._i = 0
raise StopIteration
succ = False
while not succ:
try:
feature, label = self.get_features()
succ = True
except Exception as e:
index = np.random.choice(range(0, self.__len__()))
logging.warning(
f"VideoIter:: ERROR!! (Force using another index:\n{index})\n{e}"
)
self._i += 1
return feature, label
def get_features(self) -> Tuple[Tensor, Tensor]:
"""Fetches a bucket sample from the dataset."""
normal_paths = np.random.choice(
self.features_list_normal, size=self._bucket_size
)
abnormal_paths = np.random.choice(
self.features_list_anomaly, size=self._bucket_size
)
all_paths = np.concatenate([normal_paths, abnormal_paths])
features = torch.stack(
[
read_features(f"{feature_subpath}.txt", self._features_cache)
for feature_subpath in all_paths
]
)
return (
features,
torch.cat([torch.zeros(self._bucket_size), torch.ones(self._bucket_size)]),
)
@staticmethod
def _get_features_list(
features_path: str, annotation_path: str
) -> Tuple[List[str], List[str]]:
"""Retrieves the paths of all feature files contained within the
annotation file.
Args:
features_path: Path to the directory that contains feature text files
annotation_path: Path to the annotation file
Returns:
Tuple[List[str], List[str]]: Two list that contain the corresponding paths of normal and abnormal
feature files.
"""
assert os.path.exists(features_path)
features_list_normal = []
features_list_anomaly = []
with open(annotation_path) as f:
lines = f.read().splitlines(keepends=False)
for line in lines:
items = line.split()
file = items[0].split(".")[0]
file = file.replace("/", os.sep)
feature_path = os.path.join(features_path, file)
if "Normal" in feature_path:
features_list_normal.append(feature_path)
else:
features_list_anomaly.append(feature_path)
return features_list_normal, features_list_anomaly
@property
def get_feature_dim(self) -> int:
return self[0][0].shape[-1]
class FeaturesLoaderVal(data.Dataset):
"""Loader for video features for validation phase."""
def __init__(self, features_path, annotation_path):
super().__init__()
self.features_path = features_path
# load video list
self.state = "Normal"
self.features_list = FeaturesLoaderVal._get_features_list(
features_path=features_path, annotation_path=annotation_path
)
def __len__(self):
return len(self.features_list)
def __getitem__(self, index: int):
succ = False
while not succ:
try:
data = self.get_feature(index)
succ = True
except Exception as e:
logging.warning(
f"VideoIter:: ERROR!! (Force using another index:\n{index})\n{e}"
)
return data
def get_feature(self, index: int):
"""Fetch feature that matches given index in the dataset.
Args:
index (int): Index of the feature to fetch.
Returns:
_type_: _description_
"""
feature_subpath, start_end_couples, length = self.features_list[index]
features = read_features(f"{feature_subpath}.txt")
return features, start_end_couples, length
@staticmethod
def _get_features_list(
features_path: str, annotation_path: str
) -> List[Tuple[str, Tensor, int]]:
"""Retrieves the paths of all feature files contained within the
annotation file.
Args:
features_path: Path to the directory that contains feature text files
annotation_path: Path to the annotation file
Returns:
List[Tuple[str, Tensor, int]]: A list of tuples that describe each video and the temporal annotations
of anomalies in the videos
"""
assert os.path.exists(features_path)
features_list = []
with open(annotation_path) as f:
lines = f.read().splitlines(keepends=False)
for line in lines:
items = line.split()
anomalies_frames = [int(x) for x in items[3:]]
start_end_couples = torch.tensor(
[anomalies_frames[:2], anomalies_frames[2:]]
)
file = items[0].split(".")[0]
file = file.replace("/", os.sep)
feature_path = os.path.join(features_path, file)
length = int(items[1])
features_list.append((feature_path, start_end_couples, length))
return features_list