-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathruntrain.lua
268 lines (248 loc) · 9.48 KB
/
runtrain.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
require 'dpnn'
require "cunn"
require "nngraph"
require 'hdf5'
require 'xlua'
require 'optim'
require 'itorch.Plot'
require 'gfx.js'
require 'display'
require 'itorch'
local pre_file = hdf5.open('../dataminingcapstone/ntm40.hdf5', 'r');
pre_w1 = pre_file:read('/w1'):all():transpose(1,2):type('torch.DoubleTensor');
examples = pre_file:read('/examples'):all():add(1):transpose(1,2):type('torch.DoubleTensor');
le_in = pre_file:read('/le'):all():transpose(1,2):type('torch.DoubleTensor');
local pre_file = hdf5.open('../dataminingcapstone/W1_pretrain_40.hdf5', 'r')
pre_w2 = pre_file:read('/layer_2/param_0'):all():type('torch.DoubleTensor')
-- the gram stack
gram_stack = nn.Sequential()
le_start = nn.Dictionary(le_in:size()[1], le_in:size()[2])
le_start.weight = le_in
-- mark this not-trainable
function le_start:updateParameters(learningRate)
end
gram_stack:add(le_start)
gram_stack:add(nn.Reshape(le_in:size()[2], true))
local lt1 = nn.Linear(pre_w2:size()[1], pre_w2:size()[2])
lt1.weight = pre_w2:transpose(1,2)
lt1.bias = torch.zeros(pre_w2:size()[2])
-- No bias in the lt module
function lt1:accUpdateGradParameters(input, gradOutput, lr)
local gradWeight = self.gradWeight
self.gradWeight = self.weight
self:accGradParameters(input, gradOutput, -lr)
self.gradWeight = gradWeight
end
function lt1:accGradParameters(input, gradOutput, scale)
scale = scale or 1
if input:dim() == 1 then
self.gradWeight:addr(scale, gradOutput, input)
elseif input:dim() == 2 then
self.gradWeight:addmm(scale, gradOutput:t(), input)
end
end
gram_stack:add(lt1)
gram_stack:add(nn.Sigmoid())
-- the document stack
doc_stack = nn.Sequential()
local ld_1 = nn.Dictionary(pre_w1:size()[1], pre_w1:size()[2])
ld_1.weight = pre_w1
doc_stack:add(ld_1)
doc_stack:add(nn.SoftMax())
doc_stack:add(nn.Reshape(2,pre_w1:size()[2],true))
doc_stack:add(nn.SplitTable(2,3))
-- the scoring stack
din = nn.Identity()()
ld_pos, ld_neg = doc_stack(din):split(2)
ld_pos:annotate({name = 'ld_pos'})
ld_neg:annotate({name = 'ld_neg'})
g = nn.Identity()()
lt = gram_stack({g})
ls_pos = nn.DotProduct()({lt, ld_pos})
ls_pos:annotate({name = 'ls_pos'})
ls_neg = nn.DotProduct()({lt, ld_neg})
ls_neg:annotate({name = 'ls_neg'})
ntm = nn.gModule({g, din}, {ls_pos, ls_neg})
loss_out = nn.MarginRankingCriterion(0.5):cuda()
ntm:cuda();
input_meta = {
__index = function( self, k )
-- local i = torch.LongTensor{k}
return {{self.g[k], self.d[k]}, -1}
end
}
input_data = {
g = examples:select(2,2),
d = torch.cat(
examples[{{1, examples:size()[1]}, {1}}],
examples[{{1, examples:size()[1]}, {3, examples:size()[2]}}]),
colindex = 0,
size = function (self)
return self.g:size()[1]
end,
shuffle = function (self, len)
self.shuffledIndices = torch.randperm(self.g:size()[1], 'torch.LongTensor')
self.batchIndex = 1
self.colindex = (self.colindex + 1) % (self.d:size()[2])
if self.colindex == 0 then
self.colindex = 1
end
self.g_batch = torch.DoubleTensor(len, 1)
self.d_batch = torch.DoubleTensor(len, 2)
if colindex == 1 then
self.d_view = self.d[{{1, self.d:size()[1]},{1,2}}]
else
self.d_view = torch.cat( self.d[{{1, self.d:size()[1]},{1}}],
self.d[{{1, self.d:size()[1]},{self.colindex + 1}}] )
end
self.t_batch = torch.CudaTensor(len, 1):fill(1)
return {self.g_batch, self.d_batch}, 1
end,
next_batch = function (self, len)
local maxidx = math.min(self.batchIndex + len - 1, self.d:size()[1])
local batchindices = self.shuffledIndices[{{self.batchIndex, maxidx}}]
self.g_batch:index(self.g, 1, batchindices)
self.d_batch:index(self.d_view, 1, batchindices)
self.batchIndex = self.batchIndex + len
return {self.g_batch, self.d_batch}, 1
end
}
setmetatable(input_data, input_meta)
-- function for useful plotting interface
smart_trainer = function(model, criterion,
input_data, n_classes,
batch_size, cv_split, class_train, max_epochs,
optimizer, optimizer_params,
l1, l2, chart, save_prefix)
local in_itorch = true
if itorch._iopub == nil then
in_itorch = false
end
local training_loss_history = {}
local validation_loss_history = {}
local function feval(x_in)
local prediction = model:forward(inputs, targets)
local loss = criterion:forward(prediction, targets)
gradients:zero()
local df = criterion:backward(prediction, targets)
model:backward(inputs, df)
-- regularize
local norm,sign = torch.norm, torch.sign
irregularloss = torch.sum(loss)
if l1 ~= 0 then
loss = loss + l1 * norm(x, 1)
gradients:add(sign(x):mul(l1))
end
if l2 ~= 0 then
loss = loss + l2 * norm(x,2)^2/2
gradients:add( x:clone():mul(l2))
end
-- accuracy matrix
if class_train then confusion:batchAdd(prediction, targets) end
-- gradients:div(n_batches)
return loss, gradients
end
local epoch = 0
local max_idx = input_data:size() * (1 - cv_split)
local old_text = 'Progress:<br>'
if in_itorch then
local window = itorch.html(old_text)
end
local disp = require 'display'
local best_val = 1e10
local logger = optim.Logger(save_prefix .. '.log', true)
local weightLogger = optim.Logger('weights.log', true)
local allLogger = optim.Logger('all.log', false)
logger:setNames({'training loss', 'validation loss'})
weightLogger:setNames({'lt mean', 'lt var', 'ld mean', 'ld var'})
while true do
model:training()
if class_train then
train_confusion = optim.ConfusionMatrix(n_classes)
val_confusion = optim.ConfusionMatrix(n_classes)
end
local startTime = os.time()
epoch = epoch + 1
local currentError = 0
if class_train then
train_confusion:zero()
val_confusion:zero()
end
inputs,targets = input_data:shuffle(batch_size)
x, gradients = model:getParameters()
for batch_index=1, max_idx, batch_size do
collectgarbage()
inputs, targets = input_data:next_batch(math.min(batch_size, max_idx - batch_index - 1))
_, f_table = optimizer(feval, x, optimizer_params)
local thisLoss = irregularloss
currentError = ((currentError * batch_index) + (thisLoss)) / (batch_index + batch_size)
if in_itorch then
local percCompl = math.floor(50 * batch_index / max_idx)
local eta = ((os.time() - startTime) / (percCompl / 50)) - (os.time() - startTime)
itorch.html(old_text ..
string.format('[%d / %d] [' ..
string.rep("=", percCompl - 1) .. '>' ..
string.rep(".", 49 - percCompl ) .. '] ETA: %d seconds - Batch Loss: %.6f - Avg. Epoch Loss: %.6f<br>',
batch_index, input_data:size(),
eta,
thisLoss,
currentError
),
window)
else
-- xlua:progress(batch_index, max_idx)
end
end
table.insert(training_loss_history, currentError)
-- validation
model:evaluate()
local validation_loss = 0
for batch_index=max_idx,input_data:size(),batch_size do
collectgarbage()
inputs, targets = input_data:next_batch(math.min(batch_size,
input_data:size() - batch_index - 1))
local prediction = model:forward(inputs, targets)
local losses = criterion:forward(prediction, targets)
if type(losses) == 'number' then
validation_loss = validation_loss + (losses * math.min(batch_size,
input_data:size() - batch_index - 1))
else
validation_loss = validation_loss + torch.sum(losses)
end
end
validation_loss = validation_loss / (input_data:size() - max_idx)
if validation_loss < best_val then
local filename = string.format(save_prefix .. 'batch_%d_lr_%.4f_epoch_%d_val_%.5f_.t7',
batch_size, optimizer_params.learningRate, epoch, validation_loss)
torch.save(filename, model, 'binary')
print(string.format('Achieved best val loss %.6f on epoch %d, saved as ', validation_loss, epoch) ..
filename)
best_val = validation_loss
end
table.insert(validation_loss_history, validation_loss)
logger:add({currentError, validation_loss})
if (epoch - 1) % 10 == 0 then
local lt_weights = model:get(2):get(3).weight
local lt_mean = torch.mean(lt_weights)
local lt_var = torch.std(lt_weights)
local ld_weights = model:get(4):get(1).weight
local ld_mean = torch.mean(ld_weights)
local ld_var = torch.std(ld_weights)
weightLogger:add({lt_mean, lt_var, ld_mean, ld_var})
weightLogger:plot()
end
-- report update
print(string.format('Epoch %d completed in %d seconds with training avg loss %.8f - ' ..
'Val loss %.8f.',
epoch, os.time() - startTime, currentError, validation_loss))
logger:plot()
if max_epochs and epoch >= max_epochs then
break
end
end
end
smart_trainer(ntm, loss_out,
input_data, nil,
20000, 0.2, false, 1000,
optim.sgd, {learningRate = 0.01},
0, 0, true, 'fix1_batch20000_lr01_l2000Õ)