-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOxideAsSemi.par
434 lines (374 loc) · 12.5 KB
/
OxideAsSemi.par
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
Region = "OxideAsSemiconductor_1" {
Epsilon
{ * Ratio of the permittivities of material and vacuum
* epsilon() = epsilon
epsilon = 3.9 # [1]
}
Epsilon_aniso
{ * Ratio of the permittivities of material and vacuum
* epsilon() = epsilon
epsilon = 3.9 # [1]
}
RefractiveIndex
{ * Optical Refractive Index
* refractiveindex() = refractiveindex * (1 + alpha * (T-Tpar))
Tpar = 3.0000e+02 # [K]
refractiveindex = 1.46 # [1]
alpha = 2.0000e-04 # [1/K]
* Gain dependence of refractive index in active region:
* a) Linear model: delta n = a0 * ( (n+p)/2 - N0 )
* b) Logarithmic model: delta n = a0 * log ( (n+p)/(2 * N0) )
* where n/p are the carrier densities in the active region.
a0 = 0.0000e+00 # [cm^3 or 1]
N0 = 1.0000e+18 # [1/cm^3]
}
ComplexRefractiveIndex
{ * Complex refractive index model: n_complex = n + i*k (unitless)
*
* with n = n_0 + delta_n_lambda + delta_n_T + delta_n_carr + delta_n_gain
* k = k_0 + delta_k_lambda + delta_k_carr
* Base refractive index and extinction coefficient:
* n_0, k_0
* Wavelength dependence (real and imag):
* Formula 0: delta_n_lambda = Cn_lambda * lambda + Dn_lambda * lambda^2
* delta_k_lambda = Ck_lambda * lambda + Dk_lambda * lambda^2
* Formula 1: Read tabulated values
* NumericalTable (...)
* Formula 2: Read tabulated values from file
* NumericalTable = <string>
* Formula 3: Read tabulated values from ODB Table
* Temperature dependence (real):
* delta_n_T = n_0 * ( Cn_temp * (T-Tpar))
* Carrier dependence (real)
* delta_n_carr = - Cn_carr * (const.) * (n/m_e + p/m_h)
* Carrier dependence (imag)
* delta_k_carr = 1 / (4*PI) * (wavelength^Gamma_k_carr_e*Ck_carr_e*n + wavelength^Gamma_k_carr_h*Ck_carr_h*p)
* Gain dependence (real)
* lin: delta_n_gain = Cn_gain * ( (n+p)/2 - Npar )
* log: delta_n_gain = Cn_gain * log ( (n+p)/(2 - Npar ) )
n_0 = 1.46 # [1]
k_0 = 0.0000e+00 # [1]
Cn_lambda = 0.0000e+00 # [um^-1]
Dn_lambda = 0.0000e+00 # [um^-2]
Ck_lambda = 0.0000e+00 # [um^-1]
Dk_lambda = 0.0000e+00 # [um^-2]
Cn_temp = 2.0000e-04 # [K^-1]
Cn_carr = 1 # [1]
Ck_carr = 0.0000e+00 , 0.0000e+00 # [cm^2]
Gamma_k_carr = 1 , 1 # [1]
Cn_gain = 0.0000e+00 # [cm^3]
Npar = 1.0000e+18 # [cm^-3]
Formula = 0
Tpar = 3.0000e+02 # [K]
}
* SpectralConversion
* { * Spectral Conversion Model
* No default model, user has to define.
* All wavelength parameters should be in nanometers.
* Choice of Analytic or NumericalTable selected in Physics section of region
*
* ConversionEfficiency = float * ratio of absorbed photons that are reemitted.
* AbsorptionScaling = float * scale absorption
* EmissionScaling = float * scale emission
* Analytic (
* AbsorptionProfile = (
* Gaussian(lambda0 sigma peakvalue dc_offset lambda_range0 lambda_range1)
* Lorentzian(lambda0 width peakvalue dc_offset lambda_range0 lambda_range1)
* ...
* )
* EmissionProfile = (
* Gaussian(lambda0 sigma peakvalue dc_offset lambda_range0 lambda_range1)
* Lorentzian(lambda0 width peakvalue dc_offset lambda_range0 lambda_range1)
* ...
* )
* )
* NumericalTable (
* AbsorptionProfile = (
* lambda0 value0
* lambda1 value1
* ...
* )
* EmissionProfile = (
* lambda0 value0
* lambda1 value1
* ...
* )
* ConversionEfficiency = 1.0
* }
LatticeHeatCapacity
{ * lumped electron-hole-lattice heat capacity
* cv() = cv + cv_b * T + cv_c * T^2 + cv_d * T^3
cv = 1.67 # [J/(K cm^3)]
cv_b = 0.0000e+00 # [J/(K^2 cm^3)]
cv_c = 0.0000e+00 # [J/(K^3 cm^3)]
cv_d = 0.0000e+00 # [J/(K^4 cm^3)]
}
Kappa
{ * Lattice thermal conductivity
* Formula = 1:
* kappa() = kappa + kappa_b * T + kappa_c * T^2
kappa = 0.014 # [W/(K cm)]
kappa_b = 0.0000e+00 # [W/(K^2 cm)]
kappa_c = 0.0000e+00 # [W/(K^3 cm)]
}
Kappa_aniso
{ * Lattice thermal conductivity
* Formula = 1:
* kappa() = kappa + kappa_b * T + kappa_c * T^2
kappa = 0.014 # [W/(K cm)]
kappa_b = 0.0000e+00 # [W/(K^2 cm)]
kappa_c = 0.0000e+00 # [W/(K^3 cm)]
}
Bandgap
{ * Eg = Eg0 + alpha Tpar^2 / (beta + Tpar) - alpha T^2 / (beta + T)
* Parameter 'Tpar' specifies the value of lattice
* temperature, at which parameters below are defined
* Chi0 is electron affinity.
Chi0 = 0.9 # [eV]
Eg0 = 9 # [eV]
alpha = 0.0000e+00 # [eV K^-1]
beta = 0.0000e+00 # [K]
alpha2 = 0.0000e+00 # [eV K^-1]
beta2 = 0.0000e+00 # [K]
EgMin = -1.0000e+01 # [eV]
dEgMin = 0.0000e+00 # [eV]
Tpar = 0.0000e+00 # [K]
}
FreeCarrierAbsorption
{
* Coefficients for free carrier absorption:
* fcaalpha_n for electrons,
* fcaalpha_p for holes
* FCA = (alpha_n * n + alpha_p * p) * Light Intensity
fcaalpha_n = 4.0000e-18 # [cm^2]
fcaalpha_p = 8.0000e-18 # [cm^2]
}
QWStrain
{
* Zincblende crystals:
* Parameters: a_nu, a_c, b, C_12, C_11
* StrainConstant eps (formula = 1) or lattice constant
* a0 (formula = 2) for energy shift of quantum-well
* subbands.
* a0(T) = a0 + alpha (T-Tpar)
* Wurtzite crystals:
* Parameters: a_c, D1, D2, D3, D4, C_13, C_33
* Lattice constants a0 and c0 (formula 2 must be used)
* a0(T) = a0 + alpha (T-Tpar)
* c0(T) = c0 + alpha (T-Tpar)
* Default formula = 1 # [1]
eps = 0.0000e+00 # [1]
a0 = 3.1890e-10 # [cm]
alpha = 0.0000e+00 # [cm/K]
Tpar = 3.0000e+02 # [K]
a_nu = 0.0000e+00 # [eV]
a_c = -4.0800e+00 # [eV]
b_shear = 0.0000e+00 # [eV]
c_11 = 0.0000e+00 # [1e-2 GPa]
c_12 = 0.0000e+00 # [1e-2 GPa]
d1 = -8.9000e-01 # [eV]
d2 = 4.27 # [eV]
d3 = 5.18 # [eV]
d4 = -2.5900e+00 # [eV]
c_13 = 1 # [1e-2 GPa]
c_33 = 3.92 # [1e-2 GPa]
c0 = 5.1850e-10 # [cm]
}
eDOSMass
{
* For effective mass specificatition Formula1 (me approximation):
* or Formula2 (Nc300) can be used :
Formula = 1 # [1]
* Formula1:
* me/m0 = [ (6 * mt)^2 * ml ]^(1/3) + mm
* mt = a[Eg(0)/Eg(T)]
* Nc(T) = 2(2pi*kB/h_Planck^2*me*T)^3/2 = 2.540e19 ((me/m0)*(T/300))^3/2
a = 0.0000e+00 # [1]
ml = 0.0000e+00 # [1]
mm = 0.42 # [1]
}
hDOSMass
{
* For effective mass specificatition Formula1 (mh approximation):
* or Formula2 (Nv300) can be used :
Formula = 1 # [1]
* Formula1:
* mh = m0*{[(a+bT+cT^2+dT^3+eT^4)/(1+fT+gT^2+hT^3+iT^4)]^(2/3) + mm}
* Nv(T) = 2(2pi*kB/h_Planck^2*mh*T)^3/2 = 2.540e19 ((mh/m0)*(T/300))^3/2
a = 0 # [1]
b = 0 # [K^-1]
c = 0 # [K^-2]
d = 0 # [K^-3]
e = 0 # [K^-4]
f = 0 # [K^-1]
g = 0 # [K^-2]
h = 0 # [K^-3]
i = 0 # [K^-4]
mm = 1 # [1]
}
SchroedingerParameters:
{ * For the hole masses for Schroedinger equation you can
* use different formulas.
* 0: use the isotropic density of states effective mass
* 1: (for materials with Si-like hole band structure)
* m(k)/m0=1/(A+-sqrt(B+C*((xy)^2+(yz)^2+(zx)^2)))
* where k=(x,y,z) is unit normal vector in reziprocal
* space. '+' for light hole band, '-' for heavy hole band
* 2: Heavy hole mass mh and light hole mass ml are
* specified explicitly.
* Use me as electron mass for free-carrier effect in
* the refractive index model.
* For electron masses, the following formula options exist:
* 0: use the isotropic density of states effective mass
* 1: (for materials with Si-like hole band structure)
* use the a, ml, and mm parameters from eDOSMass.
* Typically, this leads to anisotropy.
* formula<0 means no default model and no default parameters
* are available, so you have to provide values for
* 'formula' and the respective parameters in order to use
* this parameter set.
formula = 0 , 2 # [1]
* Formula(hole) 2 parameters:
ml = 0.629961 # [1]
mh = 0.629961 # [1]
me = 0.07 # [1]
* Lifting of degeneracy of bulk valleys. The value for
* electrons is added to the band edge for the subband
* ladder of lower degeneracy if positive, and subtracted
* from the band edge for the ladder of higher degeneracy
* if negative. (that is, the value of the band edge is
* always increased). For holes, the value is subtracted from
* the band edge for the heavy hole band is positive,
* add added tp that of the light hole band if
* negative. The signs are such that the shift always
* moves the band edges 'outward', away from midgap. The
* gap itself is defined as the separation of the
* unshifted band edges and remains unaffected.
offset = 0.0000e+00 , 0.0000e+00 # [eV]
* Alternative to the specification of formula, offset,
* and masses, you can make an arbitrary number of ladder
* specification, 'eLadder(mz, mxy, deg, dE) and hLadder(...)
* Here, mz is the quantization mass, mxy an in-plane DOS mass,
* deg the ladder degeneracy, and dE an shift of the band edge
* for the ladder (non-negative; the shift is always outward,
* away from midgap). When present, we solve the Schroedinger
* equation separately for each ladder
* Temperatures in rescaling of the mxy for eLadder and hLadder
ShiftTemperature = 1.0000e+10 , 1.0000e+10 # [K]
}
QuantumPotentialParameters
{ * gamma: weighting factor for quantum potential
* theta: weight for quadratic term
* xi: weight for quasi Fermi potential
* eta: weight for electrostatic potential
* nu : weight for DOS mass change from stress
gamma = 1 , 1 # [1]
theta = 0.5 , 0.5 # [1]
xi = 1 , 1 # [1]
eta = 1 , 1 # [1]
nu = 0.0000e+00 , 0.0000e+00 # [1]
}
ConstantMobility:
{ * mu_const = mumax (T/T0)^(-Exponent)
mumax = 20 , 1e-5 # [cm^2/(Vs)]
Exponent = 2.5 , 2.2 # [1]
mutunnel = 0.05 , 0.05 # [cm^2/(Vs)]
}
ConstantMobility_aniso:
{ * mu_const = mumax (T/T0)^(-Exponent)
mumax = 0.05 , 1 # [cm^2/(Vs)]
Exponent = 2.5 , 2.2 # [1]
mutunnel = 0.05 , 0.05 # [cm^2/(Vs)]
}
PooleFrenkel
{ * TrapXsection = Xsec0*(1+Gpf)
* Gpf = (1+(a-1)*exp(a))/a^2-0.5
* where
* a = (1/kT)*(q^3*F/pi/e0/epsPF)^0.5,
* F is the electric field.
epsPF = 3.9 , 3.9 # [1]
}
RadiativeRecombination * coefficients:
{ * R_Radiative = C * (T/Tpar)^alpha * (n p - ni_eff^2)
* C
* alpha
C = 0.0000e+00 # [cm^3/s]
alpha = 0.0000e+00 # []
}
Radiation
{ * G = g * D * ((E+E0)/(E+E1))^m - the generation term,
* where E is the electric field,
* E0, E1, m are constants to account the recombination,
* g is the electron-hole creation rate ,
* D is the dose rate defined in the input file.
g = 7.6000e+12 # [1/(rad*cm^3)]
E0 = 0.1 # [V/cm]
E1 = 1.3500e+06 # [V/cm]
m = 0.9 # [1]
}
Traps
{
* G is degeneracy factor
G = 1 , 1 # [1]
* XsecFormula=1: Xsec(F) = Xsec
* XsecFormula=2: Xsec(F) = Xsec*(1+a1*(F/F0)^p1+a2*(F/F0)^p2)^p0, F0 = 1 V/cm
* XsecFormula=3: Xsec(F) = Xsec*(1+Gt), Gt is Hurkx TATunneling factor
* XsecFormula=4: Xsec(F) = Xsec*(1+Gpf), Gpf is Poole-Frenkel factor
* XsecFormula=5: Xsec(F) = Nasyrov model
XsecFormula = 2 , 2 # [1]
Xsec = 1.0000e-12 , 6.8000e-14 # [cm^2]
a1 = 0.0000e+00 , 0.0000e+00 # [1]
p1 = 1 , 1 # [1]
a2 = 0.0000e+00 , 0.0000e+00 # [1]
p2 = 1 , 1 # [1]
p0 = 1 , 1 # [1]
* VthFormula=1: Vth(T) = Vth*(T/300)^1/2
* VthFormula=2: Vth(T) = (3*k*T/m_300)^1/2,
* m_300 is DOS mass calculated at T=300
VthFormula = 1 , 1 # [1]
Vth = 2.0420e+07 , 1.5626e+07 # [cm/s]
Jcoef = 1.0000e+00 , 1.0000e+00 # [1]
* Tunneling to traps is determined by the interaction volume
* TrapVolume, the Huang-Rhys factor, and the Phonon energy.
TrapVolume = 0.0000e+00 # [um^3]
HuangRhys = 0.0000e+00 # [1]
PhononEnergy = 0.0000e+00 # [eV]
alpha = 1 # [1]
* Constant emission rate term
ConstEmissionRate = 0.0000e+00 , 0.0000e+00 # [1/s]
}
BarrierTunneling "NLM" {
mt = 1 , 1
g = 1 , 1
}
BarrierTunneling "NLM2" {
mt = 1 , 1
g = 1 , 1
}
}
Region="Silicon_1" {
BarrierTunneling "NLM2" {
mt = 1 , 1
g = 1 , 1
}
}
Region="Silicon_2" {
BarrierTunneling "NLM" {
mt = 1 , 1
g = 1 , 1
}
}
RegionInterface = "OxideAsSemiconductor_1/Silicon_1" {
ThermionicEmission {
A = 2, 2 # [1]
B = 4, 4 # [1]
C = 1, 1 # [1]
}
}
RegionInterface = "OxideAsSemiconductor_1/Silicon_2" {
ThermionicEmission {
A = 2, 2 # [1]
B = 4, 4 # [1]
C = 1, 1 # [1]
}
}