forked from aromring/MAX30102_by_RF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithm_by_RF.cpp
executable file
·302 lines (286 loc) · 12 KB
/
algorithm_by_RF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/*
* Created by Robert Fraczkiewicz, 12/2017
* New signal processing methodology for obtaining heart rate and SpO2 data
* from the MAX30102 sensor manufactured by MAXIM Integrated Products, Inc.
*/
/*******************************************************************************
* Copyright (C) 2017 Robert Fraczkiewicz, All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL ROBERT FRACZKIEWICZ BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Robert Fraczkiewicz retains all
* ownership rights.
*******************************************************************************
*/
#include "algorithm_by_RF.h"
#include <math.h>
void rf_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, float *pn_spo2, int8_t *pch_spo2_valid,
int32_t *pn_heart_rate, int8_t *pch_hr_valid, float *ratio, float *correl)
/**
* \brief Calculate the heart rate and SpO2 level, Robert Fraczkiewicz version
* \par Details
* By detecting peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the xy_ratio for the SPO2 is computed.
*
* \param[in] *pun_ir_buffer - IR sensor data buffer
* \param[in] n_ir_buffer_length - IR sensor data buffer length
* \param[in] *pun_red_buffer - Red sensor data buffer
* \param[out] *pn_spo2 - Calculated SpO2 value
* \param[out] *pch_spo2_valid - 1 if the calculated SpO2 value is valid
* \param[out] *pn_heart_rate - Calculated heart rate value
* \param[out] *pch_hr_valid - 1 if the calculated heart rate value is valid
*
* \retval None
*/
{
int32_t k;
static int32_t n_last_peak_interval=LOWEST_PERIOD;
float f_ir_mean,f_red_mean,f_ir_sumsq,f_red_sumsq;
float f_y_ac, f_x_ac, xy_ratio;
float beta_ir, beta_red, x;
float an_x[BUFFER_SIZE], *ptr_x; //ir
float an_y[BUFFER_SIZE], *ptr_y; //red
// calculates DC mean and subtracts DC from ir and red
f_ir_mean=0.0;
f_red_mean=0.0;
for (k=0; k<n_ir_buffer_length; ++k) {
f_ir_mean += pun_ir_buffer[k];
f_red_mean += pun_red_buffer[k];
}
f_ir_mean=f_ir_mean/n_ir_buffer_length ;
f_red_mean=f_red_mean/n_ir_buffer_length ;
// remove DC
for (k=0,ptr_x=an_x,ptr_y=an_y; k<n_ir_buffer_length; ++k,++ptr_x,++ptr_y) {
*ptr_x = pun_ir_buffer[k] - f_ir_mean;
*ptr_y = pun_red_buffer[k] - f_red_mean;
}
// RF, remove linear trend (baseline leveling)
beta_ir = rf_linear_regression_beta(an_x, mean_X, sum_X2);
beta_red = rf_linear_regression_beta(an_y, mean_X, sum_X2);
for(k=0,x=-mean_X,ptr_x=an_x,ptr_y=an_y; k<n_ir_buffer_length; ++k,++x,++ptr_x,++ptr_y) {
*ptr_x -= beta_ir*x;
*ptr_y -= beta_red*x;
}
// For SpO2 calculate RMS of both AC signals. In addition, pulse detector needs raw sum of squares for IR
f_y_ac=rf_rms(an_y,n_ir_buffer_length,&f_red_sumsq);
f_x_ac=rf_rms(an_x,n_ir_buffer_length,&f_ir_sumsq);
// Calculate Pearson correlation between red and IR
*correl=rf_Pcorrelation(an_x, an_y, n_ir_buffer_length)/sqrt(f_red_sumsq*f_ir_sumsq);
// Find signal periodicity
if(*correl>=min_pearson_correlation) {
// At the beginning of oximetry run the exact range of heart rate is unknown. This may lead to wrong rate if the next call does not find the _first_
// peak of the autocorrelation function. E.g., second peak would yield only 50% of the true rate.
if(LOWEST_PERIOD==n_last_peak_interval)
rf_initialize_periodicity_search(an_x, BUFFER_SIZE, &n_last_peak_interval, HIGHEST_PERIOD, min_autocorrelation_ratio, f_ir_sumsq);
// RF, If correlation os good, then find average periodicity of the IR signal. If aperiodic, return periodicity of 0
if(n_last_peak_interval!=0)
rf_signal_periodicity(an_x, BUFFER_SIZE, &n_last_peak_interval, LOWEST_PERIOD, HIGHEST_PERIOD, min_autocorrelation_ratio, f_ir_sumsq, ratio);
} else n_last_peak_interval=0;
// Calculate heart rate if periodicity detector was successful. Otherwise, reset peak interval to its initial value and report error.
if(n_last_peak_interval!=0) {
*pn_heart_rate = (int32_t)(FS60/n_last_peak_interval);
*pch_hr_valid = 1;
} else {
n_last_peak_interval=LOWEST_PERIOD;
*pn_heart_rate = -999; // unable to calculate because signal looks aperiodic
*pch_hr_valid = 0;
*pn_spo2 = -999 ; // do not use SPO2 from this corrupt signal
*pch_spo2_valid = 0;
return;
}
// After trend removal, the mean represents DC level
xy_ratio= (f_y_ac*f_ir_mean)/(f_x_ac*f_red_mean); //formula is (f_y_ac*f_x_dc) / (f_x_ac*f_y_dc) ;
if(xy_ratio>0.02 && xy_ratio<1.84) { // Check boundaries of applicability
*pn_spo2 = (-45.060*xy_ratio + 30.354)*xy_ratio + 94.845;
*pch_spo2_valid = 1;
} else {
*pn_spo2 = -999 ; // do not use SPO2 since signal an_ratio is out of range
*pch_spo2_valid = 0;
}
}
float rf_linear_regression_beta(float *pn_x, float xmean, float sum_x2)
/**
* \brief Coefficient beta of linear regression
* \par Details
* Compute directional coefficient, beta, of a linear regression of pn_x against mean-centered
* point index values (0 to BUFFER_SIZE-1). xmean must equal to (BUFFER_SIZE-1)/2! sum_x2 is
* the sum of squares of the mean-centered index values.
* Robert Fraczkiewicz, 12/22/2017
* \retval Beta
*/
{
float x,beta,*pn_ptr;
beta=0.0;
for(x=-xmean,pn_ptr=pn_x;x<=xmean;++x,++pn_ptr)
beta+=x*(*pn_ptr);
return beta/sum_x2;
}
float rf_autocorrelation(float *pn_x, int32_t n_size, int32_t n_lag)
/**
* \brief Autocorrelation function
* \par Details
* Compute autocorrelation sequence's n_lag's element for a given series pn_x
* Robert Fraczkiewicz, 12/21/2017
* \retval Autocorrelation sum
*/
{
int16_t i, n_temp=n_size-n_lag;
float sum=0.0,*pn_ptr;
if(n_temp<=0) return sum;
for (i=0,pn_ptr=pn_x; i<n_temp; ++i,++pn_ptr) {
sum += (*pn_ptr)*(*(pn_ptr+n_lag));
}
return sum/n_temp;
}
void rf_initialize_periodicity_search(float *pn_x, int32_t n_size, int32_t *p_last_periodicity, int32_t n_max_distance, float min_aut_ratio, float aut_lag0)
/**
* \brief Search the range of true signal periodicity
* \par Details
* Determine the range of current heart rate by locating neighborhood of
* the _first_ peak of the autocorrelation function. If at all lags until
* n_max_distance the autocorrelation is less than min_aut_ratio fraction
* of the autocorrelation at lag=0, then the input signal is insufficiently
* periodic and probably indicates motion artifacts.
* Robert Fraczkiewicz, 04/25/2020
* \retval Average distance between peaks
*/
{
int32_t n_lag;
float aut,aut_right;
// At this point, *p_last_periodicity = LOWEST_PERIOD. Start walking to the right,
// two steps at a time, until lag ratio fulfills quality criteria or HIGHEST_PERIOD
// is reached.
n_lag=*p_last_periodicity;
aut_right=aut=rf_autocorrelation(pn_x, n_size, n_lag);
// Check sanity
if(aut/aut_lag0 >= min_aut_ratio) {
// Either quality criterion, min_aut_ratio, is too low, or heart rate is too high.
// Are we on autocorrelation's downward slope? If yes, continue to a local minimum.
// If not, continue to the next block.
do {
aut=aut_right;
n_lag+=2;
aut_right=rf_autocorrelation(pn_x, n_size, n_lag);
} while(aut_right/aut_lag0 >= min_aut_ratio && aut_right<aut && n_lag<=n_max_distance);
if(n_lag>n_max_distance) {
// This should never happen, but if does return failure
*p_last_periodicity=0;
return;
}
aut=aut_right;
}
// Walk to the right.
do {
aut=aut_right;
n_lag+=2;
aut_right=rf_autocorrelation(pn_x, n_size, n_lag);
} while(aut_right/aut_lag0 < min_aut_ratio && n_lag<=n_max_distance);
if(n_lag>n_max_distance) {
// This should never happen, but if does return failure
*p_last_periodicity=0;
} else
*p_last_periodicity=n_lag;
}
void rf_signal_periodicity(float *pn_x, int32_t n_size, int32_t *p_last_periodicity, int32_t n_min_distance, int32_t n_max_distance, float min_aut_ratio, float aut_lag0, float *ratio)
/**
* \brief Signal periodicity
* \par Details
* Finds periodicity of the IR signal which can be used to calculate heart rate.
* Makes use of the autocorrelation function. If peak autocorrelation is less
* than min_aut_ratio fraction of the autocorrelation at lag=0, then the input
* signal is insufficiently periodic and probably indicates motion artifacts.
* Robert Fraczkiewicz, 01/07/2018
* \retval Average distance between peaks
*/
{
int32_t n_lag;
float aut,aut_left,aut_right,aut_save;
bool left_limit_reached=false;
// Start from the last periodicity computing the corresponding autocorrelation
n_lag=*p_last_periodicity;
aut_save=aut=rf_autocorrelation(pn_x, n_size, n_lag);
// Is autocorrelation one lag to the left greater?
aut_left=aut;
do {
aut=aut_left;
n_lag--;
aut_left=rf_autocorrelation(pn_x, n_size, n_lag);
} while(aut_left>aut && n_lag>=n_min_distance);
// Restore lag of the highest aut
if(n_lag<n_min_distance) {
left_limit_reached=true;
n_lag=*p_last_periodicity;
aut=aut_save;
} else n_lag++;
if(n_lag==*p_last_periodicity) {
// Trip to the left made no progress. Walk to the right.
aut_right=aut;
do {
aut=aut_right;
n_lag++;
aut_right=rf_autocorrelation(pn_x, n_size, n_lag);
} while(aut_right>aut && n_lag<=n_max_distance);
// Restore lag of the highest aut
if(n_lag>n_max_distance) n_lag=0; // Indicates failure
else n_lag--;
if(n_lag==*p_last_periodicity && left_limit_reached) n_lag=0; // Indicates failure
}
*ratio=aut/aut_lag0;
if(*ratio < min_aut_ratio) n_lag=0; // Indicates failure
*p_last_periodicity=n_lag;
}
float rf_rms(float *pn_x, int32_t n_size, float *sumsq)
/**
* \brief Root-mean-square variation
* \par Details
* Compute root-mean-square variation for a given series pn_x
* Robert Fraczkiewicz, 12/25/2017
* \retval RMS value and raw sum of squares
*/
{
int16_t i;
float r,*pn_ptr;
(*sumsq)=0.0;
for (i=0,pn_ptr=pn_x; i<n_size; ++i,++pn_ptr) {
r=(*pn_ptr);
(*sumsq) += r*r;
}
(*sumsq)/=n_size; // This corresponds to autocorrelation at lag=0
return sqrt(*sumsq);
}
float rf_Pcorrelation(float *pn_x, float *pn_y, int32_t n_size)
/**
* \brief Correlation product
* \par Details
* Compute scalar product between *pn_x and *pn_y vectors
* Robert Fraczkiewicz, 12/25/2017
* \retval Correlation product
*/
{
int16_t i;
float r,*x_ptr,*y_ptr;
r=0.0;
for (i=0,x_ptr=pn_x,y_ptr=pn_y; i<n_size; ++i,++x_ptr,++y_ptr) {
r+=(*x_ptr)*(*y_ptr);
}
r/=n_size;
return r;
}