-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
559 lines (456 loc) · 26.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
from __future__ import print_function
import aggregation_rules
import numpy as np
import random
import argparse
import attacks
import data_loaders
import os
import math
import subprocess
import torch
import torch.nn as nn
import torch.utils.data
from matplotlib import pyplot as plt
def parse_args():
"""
Parses all commandline arguments.
"""
parser = argparse.ArgumentParser(description="SAFEFL: MPC-friendly framework for Private and Robust Federated Learning")
### Model and Dataset
parser.add_argument("--net", help="net", type=str, default="lr")
parser.add_argument("--server_pc", help="the number of data the server holds", type=int, default=100)
parser.add_argument("--dataset", help="dataset", type=str, default="HAR")
parser.add_argument("--bias", help="degree of non-iid", type=float, default=0.5)
parser.add_argument("--p", help="bias probability of class 1 in server dataset", type=float, default=0.1)
### Training
parser.add_argument("--niter", help="# iterations", type=int, default=2000)
parser.add_argument("--nworkers", help="# workers", type=int, default=30)
parser.add_argument("--batch_size", help="batch size", type=int, default=64)
parser.add_argument("--lr", help="learning rate", type=float, default=0.25)
parser.add_argument("--gpu", help="no gpu = -1, gpu training otherwise", type=int, default=-1)
parser.add_argument("--seed", help="seed", type=int, default=1)
parser.add_argument("--nruns", help="number of runs for averaging accuracy", type=int, default=1)
parser.add_argument("--test_every", help="testing interval", type=int, default=50)
### Aggregations
parser.add_argument("--aggregation", help="aggregation", type=str, default="fedavg")
# FLOD
parser.add_argument("--flod_threshold", help="hamming distance threshold as fraction of total model parameters", type=float, default=0.5)
# FLAME
parser.add_argument("--flame_epsilon", help="epsilon for differential privacy in FLAME", type=int, default=3000)
parser.add_argument("--flame_delta", help="delta for differential privacy in FLAME", type=float, default=0.001)
# DNC
parser.add_argument("--dnc_niters", help="number of iterations to compute good sets in DnC", type=int, default=5)
parser.add_argument("--dnc_c", help="filtering fraction, percentage of number of malicious clients filtered", type=float, default=1)
parser.add_argument("--dnc_b", help="dimension of subsamples must be smaller, then the dimension of the gradients", type=int, default=2000)
### Attacks
parser.add_argument("--nbyz", help="# byzantines", type=int, default=6)
parser.add_argument("--byz_type", help="type of attack", type=str, default="no", choices=["no", "trim_attack", "krum_attack",
"scaling_attack", "fltrust_attack", "label_flipping_attack", "min_max_attack", "min_sum_attack"])
### MP-SPDZ
parser.add_argument('--mpspdz', default=False, action='store_true', help='Run example in multiprocess mode')
parser.add_argument("--port", help="port for the mpc servers", type=int, default=14000)
parser.add_argument("--chunk_size", help="data amount send between client and server at once", type=int, default=200)
parser.add_argument("--protocol", help="protocol used in MP-SPDZ", type=str, default="semi2k",
choices=["semi2k", "spdz2k", "replicated2k", "psReplicated2k"])
parser.add_argument("--players", help="number of computation parties", type=int, default=2)
parser.add_argument("--threads", help="number of threads per computation party in MP-SPDZ", type=int, default=1)
parser.add_argument("--parallels", help="number of parallel computation for each thread", type=int, default=1)
parser.add_argument('--always_compile', default=False, action='store_true', help='compiles program even if it was already compiled')
return parser.parse_args()
def get_device(device):
"""
Selects the device to run the training process on.
device: -1 to only use cpu, otherwise cuda if available
"""
if device == -1:
ctx = torch.device('cpu')
else:
ctx = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(ctx)
return ctx
def get_net(net_type, num_inputs, num_outputs=10):
"""
Selects the model architecture.
net_type: name of the model architecture
num_inputs: number of inputs of model
num_outputs: number of outputs/classes
"""
if net_type == "lr":
import models.lr as lr
net = lr.LinearRegression(input_dim=num_inputs, output_dim=num_outputs)
print(net)
else:
raise NotImplementedError
return net
def get_byz(byz_type):
"""
Gets the attack type.
byz_type: name of the attack
"""
if byz_type == "no":
return attacks.no_byz
elif byz_type == 'trim_attack':
return attacks.trim_attack
elif byz_type == "krum_attack":
return attacks.krum_attack
elif byz_type == "scaling_attack":
return attacks.scaling_attack_scale
elif byz_type == "fltrust_attack":
return attacks.fltrust_attack
elif byz_type == "label_flipping_attack":
return attacks.no_byz
elif byz_type == "min_max_attack":
return attacks.min_max_attack
elif byz_type == "min_sum_attack":
return attacks.min_sum_attack
else:
raise NotImplementedError
def get_protocol(protocol, players):
"""
Returns the shell script name and number of players for the protocol.
protocol: name of the protocol
players: number of parties
"""
if players < 2:
raise Exception("Number of players must at least be 2")
if protocol == "semi2k":
return "semi2k.sh", players
elif protocol == 'spdz2k':
return "spdz2k.sh", players
elif protocol == "replicated2k":
if players != 3:
raise Exception("Number of players must be 3 for replicated2k")
return "ring.sh", 3
elif protocol == "psReplicated2k":
if players != 3:
raise Exception("Number of players must be 3 for psReplicated2k")
return "ps-rep-ring.sh", 3
else:
raise NotImplementedError
def evaluate_accuracy(data_iterator, net, device, trigger, dataset):
"""
Evaluate the accuracy and backdoor success rate of the model. Fails if model output is NaN.
data_iterator: test data iterator
net: model
device: device used in training and inference
trigger: boolean if backdoor success rate should be evaluated
dataset: name of the dataset used in the backdoor attack
"""
correct = 0
total = 0
successful = 0
net.eval()
with torch.no_grad():
for i, (inputs, targets) in enumerate(data_iterator):
inputs = inputs.to(device)
targets = targets.to(device)
outputs = net(inputs)
if not torch.isnan(outputs).any():
_, predicted = outputs.max(1)
correct += predicted.eq(targets).sum().item()
total += inputs.shape[0]
else:
print("NaN in output of net")
raise ArithmeticError
if trigger: # backdoor attack
backdoored_inputs, backdoored_targets = attacks.add_backdoor(inputs, targets, dataset)
backdoored_outputs = net(backdoored_inputs)
if not torch.isnan(backdoored_outputs).any():
_, backdoored_predicted = backdoored_outputs.max(1)
successful += backdoored_predicted.eq(backdoored_targets).sum().item()
else:
print("NaN in output of net")
raise ArithmeticError
success_rate = successful / total
acc = correct / total
if trigger:
return acc, success_rate
else:
return acc, None
def plot_results(runs_test_accuracy, runs_backdoor_success, test_iterations, niter):
"""
Plots the evaluation results.
runs_test_accuracy: accuracy of the model in each iteration specified in test_iterations of every run
runs_backdoor_success: backdoor success of the model in each iteration specified in test_iterations of every run
test_iterations: list of iterations the model was evaluated in
niter: number of iteration the model was trained for
"""
test_acc_std = []
test_acc_list = []
backdoor_success_std = []
backdoor_success_list = []
# insert (0,0) as starting point for plot and calculate mean and standard deviation if multiple runs were performed
if args.nruns == 1:
if args.byz_type == "scaling_attack":
runs_backdoor_success = np.insert(runs_backdoor_success, 0, 0, axis=0)
backdoor_success_list = runs_backdoor_success
backdoor_success_std = [0 for i in range(0, len(runs_backdoor_success))]
runs_test_accuracy = np.insert(runs_test_accuracy, 0, 0, axis=0)
test_acc_list = runs_test_accuracy
test_acc_std = [0 for i in range(0, len(runs_test_accuracy))]
else:
if args.byz_type == "scaling_attack":
runs_backdoor_success = np.insert(runs_backdoor_success, 0, 0, axis=1)
backdoor_success_list = np.mean(runs_backdoor_success, axis=0)
backdoor_success_std = np.std(runs_backdoor_success, axis=0)
runs_test_accuracy = np.insert(runs_test_accuracy, 0, 0, axis=1)
test_acc_std = np.std(runs_test_accuracy, axis=0)
test_acc_list = np.mean(runs_test_accuracy, axis=0)
test_iterations.insert(0, 0)
# Print accuracy and backdoor success rate in array form to console
print("Test accuracy of runs:")
print(repr(runs_test_accuracy))
if args.byz_type == "scaling_attack":
print("Backdoor attack success rate of runs:")
print(repr(runs_backdoor_success))
# Determine in which iteration in what run the highest accuracy was achieved.
# Also print overall mean accuracy and backdoor success rate
max_index = np.unravel_index(runs_test_accuracy.argmax(), runs_test_accuracy.shape)
if args.nruns == 1:
print("Run 1 in iteration %02d had the highest accuracy of %0.4f" % (max_index[0] * 50, runs_test_accuracy.max()))
else:
print("Run %02d in iteration %02d had the highest accuracy of %0.4f" % (max_index[0] + 1, max_index[1] * 50, runs_test_accuracy.max()))
print("The average final accuracy was: %0.4f with an overall average:" % (test_acc_list[-1]))
print(repr(test_acc_list))
if args.byz_type == "scaling_attack":
print("The average final backdoor success rate was: %0.4f with an overall average:" % backdoor_success_list[-1])
print(repr(backdoor_success_list))
# Generate plot with two axis displaying accuracy and backdoor success rate over the iterations
if args.byz_type == "scaling_attack":
fig, ax1 = plt.subplots()
ax1.set_xlabel('epochs')
ax1.set_ylabel('accuracy')
accuracy_plot = ax1.plot(test_iterations, test_acc_list, color='C0', label='accuracy')
ax1.fill_between(test_iterations, test_acc_list - test_acc_std, test_acc_list + test_acc_std, color='C0')
ax1.set_ylim(0, 1)
ax2 = ax1.twinx()
ax2.set_ylabel('Backdoor success rate')
backdoor_plot = ax2.plot(test_iterations, backdoor_success_list, color='C1', label='Backdoor success rate')
ax2.fill_between(test_iterations, backdoor_success_list - backdoor_success_std, backdoor_success_list + backdoor_success_std, color='C1')
ax2.set_ylim(0, 1)
lns = accuracy_plot + backdoor_plot
labels = [l.get_label() for l in lns]
plt.legend(lns, labels, loc=0)
plt.xlim(0, niter)
plt.title("Test Accuracy + Backdoor success: " + args.net + ", " + args.dataset + ", " + args.aggregation + ", " + args.byz_type + ", nruns " + str(args.nruns))
plt.grid()
plt.show()
# Generate plot with only the accuracy as one axis over the iterations
else:
plt.plot(test_iterations, test_acc_list, color='C0')
plt.fill_between(test_iterations, test_acc_list - test_acc_std, test_acc_list + test_acc_std, color='C0')
plt.title("Test Accuracy: " + args.net + ", " + args.dataset + ", " + args.aggregation + ", " + args.byz_type + ", nruns " + str(args.nruns))
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.xlim(0, niter)
plt.ylim(0, 1)
plt.grid()
plt.show()
def weight_init(m):
"""
Initializes the weights of the layer with random values.
m: the layer which gets initialized
"""
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight, gain=2.24)
if m.bias is not None:
torch.nn.init.zeros_(m.bias)
def main(args):
"""
The main function that runs the entire training process of the model.
args: arguments defining hyperparameters
"""
# setup
device = get_device(args.gpu)
num_inputs, num_outputs, num_labels = data_loaders.get_shapes(args.dataset)
byz = get_byz(args.byz_type)
# Print all arguments
paraString = ('dataset: p' + str(args.p) + '_' + str(args.dataset) + ", server_pc: " + str(args.server_pc) + ", bias: " + str(args.bias)
+ ", nworkers: " + str(args.nworkers) + ", net: " + str(args.net) + ", niter: " + str(args.niter) + ", lr: " + str(args.lr)
+ ", batch_size: " + str(args.batch_size) + ", nbyz: " + str(args.nbyz) + ", attack: " + str(args.byz_type)
+ ", aggregation: " + str(args.aggregation) + ", FLOD_threshold: " + str(args.flod_threshold)
+ ", Flame_epsilon: " + str(args.flame_epsilon) + ", Flame_delta: " + str(args.flame_delta) + ", Number_runs: " + str(args.nruns)
+ ", DnC_niters: " + str(args.dnc_niters) + ", DnC_c: " + str(args.dnc_c) + ", DnC_b: " + str(args.dnc_b)
+ ", MP-SPDZ: " + str(args.mpspdz) + ", Port: "+ str(args.port) + ", Chunk_size: " + str(args.chunk_size)
+ ", Protocol: " + args.protocol + ", Threads: " + str(args.threads) + ", Parallels: " + str(args.parallels)
+ ", Seed: " + str(args.seed) + ", Test Every: " + str(args.test_every))
print(paraString)
# saving iterations for averaging
runs_test_accuracy = []
runs_backdoor_success = []
test_iterations = []
backdoor_success_list = []
# model
net = get_net(args.net, num_outputs=num_outputs, num_inputs=num_inputs)
net = net.to(device)
num_params = torch.cat([xx.reshape((-1, 1)) for xx in net.parameters()], dim=0).size()[0] # used for FLOD to determine threshold
# loss
softmax_cross_entropy = nn.CrossEntropyLoss()
# perform parameter checks
if args.dnc_b > num_params and args.aggregation == "divide_and_conquer":
args.dnc_b = num_params # check for condition in description and fix possible error
print("b was larger than the dimension of gradients. Set to dimension of gradients for correctness!")
if args.dnc_c * args.nbyz >= args.nworkers and args.aggregation == "divide_and_conquer":
print("DnC removes all gradients during his computation. Lower c or nbyz, or increase number of devices.")
if args.server_pc == 0 and (args.aggregation in ["fltrust", "flod", "flare"] or args.byz_type == "fltrust_attack"):
raise ValueError("Server dataset size cannot be 0 when aggregation is FLTrust, MPC FLTrust, FLOD or attack is fltrust attack")
if args.dataset == "HAR" and args.nworkers != 30:
raise ValueError("HAR only works for 30 workers!")
# compile server programm for aggregation in MPC
if args.mpspdz:
script, players = get_protocol(args.protocol, args.players)
args.script, args.players = script, players
if args.aggregation == "fedavg":
args.filename_server = "mpc_fedavg_server"
num_gradients = args.nworkers
elif args.aggregation == "fltrust":
args.filename_server = "mpc_fltrust_server"
num_gradients = args.nworkers + 1
else:
raise NotImplementedError
os.chdir("mpspdz")
args.full_filename = f'{args.filename_server}-{args.port}-{num_params}-{num_gradients}-{args.niter}-{args.chunk_size}-{args.threads}-{args.parallels}'
if not os.path.exists('./Programs/Bytecode'):
os.mkdir('./Programs/Bytecode')
already_compiled = len(list(filter(lambda f : f.find(args.full_filename) != -1, os.listdir('./Programs/Bytecode')))) != 0
if args.always_compile or not already_compiled:
# compile mpc program, arguments -R 64 -X were chosen so that every protocol works
os.system('./compile.py -R 64 -X ' + args.filename_server + ' ' + str(args.port) + ' ' + str(num_params) + ' ' + str(num_gradients) + ' ' + str(args.niter) + ' ' + str(args.chunk_size) + ' ' + str(args.threads) + ' ' + str(args.parallels))
# setup ssl keys
os.system('Scripts/setup-ssl.sh ' + str(args.players))
os.system('Scripts/setup-clients.sh 1')
os.chdir("..")
# perform multiple runs
for run in range(1, args.nruns+1):
grad_list = []
test_acc_list = []
test_iterations = []
backdoor_success_list = []
server_process = None
# fix the seeds for deterministic results
if args.seed > 0:
args.seed = args.seed + run - 1
torch.cuda.manual_seed_all(args.seed)
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
net.apply(weight_init) # initialization of model
# set aggregation specific variables
if args.aggregation == "shieldfl":
previous_global_gradient = 0 # important for ShieldFL, all other aggregation rules don't need it
previous_gradients = []
elif args.aggregation == "foolsgold":
gradient_history = [torch.zeros(size=(num_params, 1)).to(device) for i in range(args.nworkers)] # client gradient history for FoolsGold
elif args.aggregation == "contra":
gradient_history = [torch.zeros(size=(num_params, 1)).to(device) for i in range(args.nworkers)] # client gradient history for CONTRA
reputation = torch.ones(size=(args.nworkers, )).to(device) # reputation scores for CONTRA
cos_dist = torch.zeros((args.nworkers, args.nworkers), dtype=torch.double).to(device) # pairwise cosine similarity for CONTRA
elif args.aggregation == "romoa":
# don't know why they initialize it like this
previous_global_gradient = torch.cat([param.clone().detach().flatten() for param in net.parameters()]).reshape(-1, 1) + torch.normal(mean=0, std=1e-7, size=(num_params, 1)).to(device)
sanitization_factor = torch.full(size=(args.nworkers, num_params), fill_value=(1 / args.nworkers)).to(device) # sanitization factors for Romoa
train_data, test_data = data_loaders.load_data(args.dataset, args.seed) # load the data
# assign data to the server and clients
server_data, server_label, each_worker_data, each_worker_label = data_loaders.assign_data(train_data, args.bias, device,
num_labels=num_labels, num_workers=args.nworkers, server_pc=args.server_pc, p=args.p, dataset=args.dataset, seed=args.seed)
# perform data poisoning attacks
if args.byz_type == "label_flipping_attack":
each_worker_label = attacks.label_flipping_attack(each_worker_label, args.nbyz, num_labels)
elif args.byz_type == "scaling_attack":
each_worker_data, each_worker_label = attacks.scaling_attack_insert_backdoor(each_worker_data, each_worker_label, args.dataset, args.nbyz, device)
print("Data done")
# start FLTrust computation parties
if args.mpspdz:
os.chdir("mpspdz")
print("Starting Computation Parties")
# start computation servers using a child process to run in parallel
server_process = subprocess.Popen(["./run_aggregation.sh", args.script, args.full_filename, str(args.players)])
os.chdir("..")
with torch.no_grad():
# training
for e in range(args.niter):
net.train()
# perform local training for each worker
for i in range(args.nworkers):
minibatch = np.random.choice(list(range(each_worker_data[i].shape[0])), size=args.batch_size, replace=False)
net.zero_grad()
with torch.enable_grad():
output = net(each_worker_data[i][minibatch])
loss = softmax_cross_entropy(output, each_worker_label[i][minibatch])
loss.backward()
grad_list.append([param.grad.clone().detach() for param in net.parameters()])
# compute server update and append it to the end of the list
if args.aggregation in ["fltrust", "flod"] or args.byz_type == "fltrust_attack":
net.zero_grad()
with torch.enable_grad():
output = net(server_data)
loss = softmax_cross_entropy(output, server_label)
loss.backward()
grad_list.append([torch.clone(param.grad) for param in net.parameters()])
# perform the aggregation
if args.mpspdz:
aggregation_rules.mpspdz_aggregation(grad_list, net, args.lr, args.nbyz, byz, device, param_num=num_params, port=args.port, chunk_size=args.chunk_size, parties=args.players)
elif args.aggregation == "fltrust":
aggregation_rules.fltrust(grad_list, net, args.lr, args.nbyz, byz, device)
elif args.aggregation == "fedavg":
data_sizes = [x.size(dim=0) for x in each_worker_data]
aggregation_rules.fedavg(grad_list, net, args.lr, args.nbyz, byz, device, data_sizes)
elif args.aggregation == "krum":
aggregation_rules.krum(grad_list, net, args.lr, args.nbyz, byz, device)
elif args.aggregation == "trim_mean":
aggregation_rules.trim_mean(grad_list, net, args.lr, args.nbyz, byz, device)
elif args.aggregation == "median":
aggregation_rules.median(grad_list, net, args.lr, args.nbyz, byz, device)
elif args.aggregation == "flame":
aggregation_rules.flame(grad_list, net, args.lr, args.nbyz, byz, device, epsilon=args.flame_epsilon, delta=args.flame_delta)
elif args.aggregation == "shieldfl":
previous_global_gradient, previous_gradients = aggregation_rules.shieldfl(grad_list, net, args.lr, args.nbyz, byz, device, previous_global_gradient, e, previous_gradients)
elif args.aggregation == "flod":
aggregation_rules.flod(grad_list, net, args.lr, args.nbyz, byz, device, threshold=math.floor(num_params * args.flod_threshold))
elif args.aggregation == "divide_and_conquer":
aggregation_rules.divide_and_conquer(grad_list, net, args.lr, args.nbyz, byz, device, niters=args.dnc_niters, c=args.dnc_c, b=args.dnc_b)
elif args.aggregation == "foolsgold":
gradient_history = aggregation_rules.foolsgold(grad_list, net, args.lr, args.nbyz, byz, device, gradient_history=gradient_history)
elif args.aggregation == "contra":
gradient_history, reputation, cos_dist = aggregation_rules.contra(grad_list, net, args.lr, args.nbyz, byz, device, gradient_history=gradient_history, reputation=reputation, cos_dist=cos_dist, C=1)
elif args.aggregation == "signguard":
aggregation_rules.signguard(grad_list, net, args.lr, args.nbyz, byz, device, seed=args.seed)
elif args.aggregation == "flare":
aggregation_rules.flare(grad_list, net, args.lr, args.nbyz, byz, device, server_data)
elif args.aggregation == "romoa":
sanitization_factor, previous_global_gradient = aggregation_rules.romoa(grad_list, net, args.lr, args.nbyz, byz, device, F=sanitization_factor, prev_global_update=previous_global_gradient, seed=args.seed)
else:
raise NotImplementedError
del grad_list
grad_list = []
# evaluate the model accuracy
if (e + 1) % args.test_every == 0:
test_accuracy, test_success_rate = evaluate_accuracy(test_data, net, device, args.byz_type == "scaling_attack", args.dataset)
test_acc_list.append(test_accuracy)
test_iterations.append(e)
if args.byz_type == "scaling_attack":
backdoor_success_list.append(test_success_rate)
print("Iteration %02d. Test_acc %0.4f. Backdoor success rate: %0.4f" % (e, test_accuracy, test_success_rate))
else:
print("Iteration %02d. Test_acc %0.4f" % (e, test_accuracy))
if args.mpspdz:
server_process.wait() # wait for process to exit
# Append accuracy and backdoor success rate to overall runs list
if len(runs_test_accuracy) > 0:
runs_test_accuracy = np.vstack([runs_test_accuracy, test_acc_list])
if args.byz_type == "scaling_attack":
runs_backdoor_success = np.vstack([runs_backdoor_success, backdoor_success_list])
else:
runs_test_accuracy = test_acc_list
if args.byz_type == "scaling_attack":
runs_backdoor_success = backdoor_success_list
if args.byz_type == "scaling_attack":
print("Run %02d/%02d done with final accuracy: %0.4f and backdoor success rate: %0.4f" % (run, args.nruns, test_acc_list[-1], backdoor_success_list[-1]))
else:
print("Run %02d/%02d done with final accuracy: %0.4f" % (run, args.nruns, test_acc_list[-1]))
del test_acc_list
test_acc_list = []
if __name__ == "__main__":
args = parse_args() # parse arguments
main(args) # call main with parsed arguments