-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathbuild_data.py
executable file
·118 lines (90 loc) · 3.44 KB
/
build_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import tensorflow as tf
import random
import os
from PIL import Image
try:
from os import scandir
except ImportError:
# Python 2 polyfill module
from scandir import scandir
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string('X_input_dir', 'data/apple2orange/trainA',
'X input directory, default: data/apple2orange/trainA')
tf.flags.DEFINE_string('Y_input_dir', 'data/apple2orange/trainB',
'Y input directory, default: data/apple2orange/trainB')
tf.flags.DEFINE_string('X_output_file', 'data/tfrecords/apple.tfrecords',
'X output tfrecords file, default: data/tfrecords/apple.tfrecords')
tf.flags.DEFINE_string('Y_output_file', 'data/tfrecords/orange.tfrecords',
'Y output tfrecords file, default: data/tfrecords/orange.tfrecords')
def data_reader(input_dir, shuffle=True):
"""Read images from input_dir then shuffle them
Args:
input_dir: string, path of input dir, e.g., /path/to/dir
Returns:
file_paths: list of strings
"""
file_paths = []
for img_file in scandir(input_dir):
if img_file.name.endswith('.jpg') and img_file.is_file():
file_paths.append(img_file.path)
if shuffle:
# Shuffle the ordering of all image files in order to guarantee
# random ordering of the images with respect to label in the
# saved TFRecord files. Make the randomization repeatable.
shuffled_index = list(range(len(file_paths)))
random.seed(12345)
random.shuffle(shuffled_index)
file_paths = [file_paths[i] for i in shuffled_index]
return file_paths
def _int64_feature(value):
"""Wrapper for inserting int64 features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
"""Wrapper for inserting bytes features into Example proto."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _convert_to_example(file_path, image_buffer):
"""Build an Example proto for an example.
Args:
file_path: string, path to an image file, e.g., '/path/to/example.JPG'
image_buffer: string, JPEG encoding of RGB image
Returns:
Example proto
"""
file_name = file_path.split('/')[-1]
example = tf.train.Example(features=tf.train.Features(feature={
'image/file_name': _bytes_feature(tf.compat.as_bytes(os.path.basename(file_name))),
'image/encoded_image': _bytes_feature((image_buffer))
}))
return example
def data_writer(input_dir, output_file):
"""Write data to tfrecords
"""
file_paths = data_reader(input_dir)
# create tfrecords dir if not exists
output_dir = os.path.dirname(output_file)
try:
os.makedirs(output_dir)
except (os.error):
pass
images_num = len(file_paths)
# dump to tfrecords file
writer = tf.python_io.TFRecordWriter(output_file)
for i in range(len(file_paths)):
file_path = file_paths[i]
with tf.gfile.FastGFile(file_path, 'rb') as f:
image_data = f.read()
example = _convert_to_example(file_path, image_data)
writer.write(example.SerializeToString())
if i % 500 == 0:
print("Processed {}/{}.".format(i, images_num))
print("Done.")
writer.close()
def main(unused_argv):
print("Convert X data to tfrecords...")
data_writer(FLAGS.X_input_dir, FLAGS.X_output_file)
print("Convert Y data to tfrecords...")
data_writer(FLAGS.Y_input_dir, FLAGS.Y_output_file)
if __name__ == '__main__':
tf.app.run()