-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathBalancedParentheses.scala
406 lines (331 loc) · 13.7 KB
/
BalancedParentheses.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import stainless.annotation._
import stainless.lang._
import stainless.equations._
import scala.language.postfixOps
object BalancedParenthesesUtils {
@inline
def parallel[A,B](x: => A, y: => B): (A,B) = (x, y)
@inline
def check(p: Boolean): Boolean = p
}
import BalancedParenthesesUtils._
object BalancedParenthesesLists {
sealed abstract class List[A] {
def foldRight[B](z: B)(f: (A, B) => B): B = {
decreases(this)
this match {
case Nil() => z
case Cons(x, xs) => f(x, xs.foldRight(z)(f))
}
}
def foldRight1(f: (A, A) => A): A = {
require(!this.isEmpty())
decreases(this)
this match {
case Cons(x, Nil()) => x
case Cons(x, xs) => f(x, xs.foldRight1(f))
}
}
def append(that: List[A]): List[A] = {
decreases(this)
this match {
case Nil() => that
case Cons(x, xs) => Cons(x, xs.append(that))
}
}
def isEmpty() = this match {
case Nil() => true
case _ => false
}
def map[B](f: A => B): List[B] = {
decreases(this)
this match {
case Nil() => Nil()
case Cons(x, xs) => Cons(f(x), xs.map(f))
}
}
}
case class Nil[A]() extends List[A]
case class Cons[A](head: A, tail: List[A]) extends List[A]
}
object Trees {
import BalancedParenthesesLists._
sealed abstract class Tree[A] {
def toList(): List[A] = {
decreases(this)
this match {
case Leaf(x) => Cons(x, Nil())
case Branch(l, r) => l.toList().append(r.toList())
}
}.ensuring(res => !res.isEmpty())
def fold(f: (A, A) => A): A = {
decreases(this)
this match {
case Leaf(x) => x
case Branch(l, r) => {
val (left, right) = parallel(l.fold(f), r.fold(f))
f(left, right)
}
}
}
def map[B](f: A => B): Tree[B] = {
decreases(this)
this match {
case Leaf(x) => Leaf(f(x))
case Branch(l, r) => {
val (left, right) = parallel(l.map(f), r.map(f))
Branch(left, right)
}
}
}
}
case class Leaf[A](value: A) extends Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]
}
object BalancedParentheses {
import Trees._
import BalancedParenthesesLists._
/** Original algorithm to check whether is list of parenthesis is matched. */
def isMatched(xs: List[Parenthesis]): Boolean = {
xs.foldRight(BigInt(0))(updateCounter) == 0
}
def updateCounter(p: Parenthesis, c: BigInt): BigInt =
if (c < 0) -1
else p match {
case OpenParenthesis() => c - 1
case CloseParenthesis() => c + 1
}
def min(a: BigInt, b: BigInt): BigInt = if (a <= b) a else b
sealed abstract class Parenthesis
case class OpenParenthesis() extends Parenthesis
case class CloseParenthesis() extends Parenthesis
case class Balance(extraOpen: BigInt, extraClose: BigInt) {
def nonNegative: Boolean = extraOpen >= 0 && extraClose >= 0
def ++(that: Balance): Balance = {
val openedClosed = min(this.extraOpen, that.extraClose)
val newExtraOpen = this.extraOpen + that.extraOpen - openedClosed
val newExtraClose = this.extraClose + that.extraClose - openedClosed
Balance(newExtraOpen, newExtraClose)
}
def isBalanced(): Boolean = extraOpen == 0 && extraClose == 0
def +:(p: Parenthesis): Balance = {
p match {
case OpenParenthesis() if extraClose > 0 => Balance(extraOpen, extraClose - 1)
case OpenParenthesis() => Balance(extraOpen + 1, extraClose)
case CloseParenthesis() => Balance(extraOpen, extraClose + 1)
}
}
}
def fromParenthesis(parenthesis: Parenthesis) = parenthesis match {
case OpenParenthesis() => Balance(1, 0)
case CloseParenthesis() => Balance(0, 1)
}
/** Sequentially checks the list of parenthesis is balanced. */
def isMatchedSequential(xs: List[Parenthesis]): Boolean = {
xs.foldRight(Balance(0, 0))(_ +: _).isBalanced()
}
/** Sequentially checks the list of parenthesis is balanced.
*
* This version is closer to the parallel one.
*/
def isMatchedHybid(xs: List[Parenthesis]): Boolean = {
require(!xs.isEmpty())
xs.map(fromParenthesis).foldRight1(_ ++ _).isBalanced()
}
/** Checks "in parallel" that the given parenthesis are balanced. */
def isMatchedParallel(tree: Tree[Parenthesis]): Boolean = {
tree.map(fromParenthesis).fold(_ ++ _).isBalanced()
}
}
object BalancedParenthesesSpecs {
import BalancedParentheses._
import Trees._
import BalancedParenthesesLists._
def append_is_associative(a: Balance, b: Balance, c: Balance): Boolean = {
a ++ (b ++ c) == (a ++ b) ++ c
}.holds
def cons_append_equivalence(p: Parenthesis, b: Balance): Boolean = {
require(b.nonNegative)
p +: b == fromParenthesis(p) ++ b
}.holds
@induct
def folds_equivalence(xs: List[Parenthesis]): Boolean = {
xs.foldRight(Balance(0, 0))(fromParenthesis(_) ++ _) == xs.foldRight(Balance(0, 0))(_ +: _)
}.holds
def append(xs: List[Balance], ys: List[Balance]): Boolean = {
require(!xs.isEmpty() && !ys.isEmpty())
decreases(xs)
val f: (Balance, Balance) => Balance = _ ++ _
(f(xs.foldRight1(f), ys.foldRight1(f)) == xs.append(ys).foldRight1(f)) because {
xs match {
case Cons(x, Nil()) => {
f(xs.foldRight1(f), ys.foldRight1(f)) ==| (xs.foldRight1(f) == x) |
f(x, ys.foldRight1(f)) ==| trivial |
Cons(x, ys).foldRight1(f) ==| (xs.append(ys) == Cons(x, ys)) |
xs.append(ys).foldRight1(f)
} qed
case Cons(z, zs) => {
f(xs.foldRight1(f), ys.foldRight1(f)) ==| (xs.foldRight1(f) == f(z, zs.foldRight1(f))) |
f(f(z, zs.foldRight1(f)), ys.foldRight1(f)) ==| append_is_associative(z, zs.foldRight1(f), ys.foldRight1(f)) |
f(z, f(zs.foldRight1(f), ys.foldRight1(f))) ==| append(zs, ys) |
f(z, zs.append(ys).foldRight1(f)) ==| trivial |
Cons(z, zs.append(ys)).foldRight1(f) ==| trivial |
xs.append(ys).foldRight1(f)
} qed
}
}
}.holds
def fold_foldRight1_equivalence(tree: Tree[Balance]): Boolean = {
decreases(tree)
val f: (Balance, Balance) => Balance = _ ++ _
(tree.fold(f) == tree.toList().foldRight1(f)) because {
tree match {
case Leaf(x) => {
tree.fold(f) ==| trivial |
x ==| trivial |
Cons(x, Nil()).foldRight1(f) ==| trivial |
tree.toList().foldRight1(f)
} qed
case Branch(l, r) => {
tree.fold(f) ==| trivial |
f(l.fold(f), r.fold(f)) ==| fold_foldRight1_equivalence(l) |
f(l.toList().foldRight1(f), r.fold(f)) ==| fold_foldRight1_equivalence(r) |
f(l.toList().foldRight1(f), r.toList().foldRight1(f)) ==| append(l.toList(), r.toList()) |
l.toList().append(r.toList()).foldRight1(f) ==| trivial |
tree.toList().foldRight1(f)
} qed
}
}
}.holds
@induct
def map_append(xs: List[Parenthesis], ys: List[Parenthesis], f: Parenthesis => Balance): Boolean = {
xs.map(f).append(ys.map(f)) == xs.append(ys).map(f)
}.holds
def toList_map_commutativity(tree: Tree[Parenthesis], f: Parenthesis => Balance): Boolean = {
decreases(tree)
(tree.map(f).toList() == tree.toList().map(f)) because {
tree match {
case Leaf(x) => trivial
case Branch(l, r) => {
check(toList_map_commutativity(l, f)) &&
check(toList_map_commutativity(r, f)) &&
check(map_append(l.toList(), r.toList(), f))
}
}
}
}.holds
@induct
def foldRight_accumulator_equivalence[A](xs: List[A], z: A, f: (A, A) => A): Boolean = {
xs.foldRight(z)(f) == xs.append(Cons(z, Nil())).foldRight1(f)
}.holds
@induct
def foldRight_map_commutivity(xs: List[Parenthesis]): Boolean = {
xs.foldRight(Balance(0, 0))(fromParenthesis(_) ++ _) == xs.map(fromParenthesis).foldRight(Balance(0, 0))(_ ++ _)
}.holds
def remove_null_balance(xs: List[Parenthesis]): Boolean = {
require(!xs.isEmpty())
decreases(xs)
(xs.map(fromParenthesis).append(Cons(Balance(0, 0), Nil())).foldRight1(_ ++ _) ==
xs.map(fromParenthesis).foldRight1(_ ++ _)) because {
xs match {
case Cons(y, Nil()) => {
xs.map(fromParenthesis).append(Cons(Balance(0, 0), Nil())).foldRight1(_ ++ _) ==|
trivial |
fromParenthesis(y) ++ Balance(0, 0) ==|
trivial |
fromParenthesis(y) ==|
trivial |
xs.map(fromParenthesis).foldRight1(_ ++ _)
} qed
case Cons(y, ys) => {
xs.map(fromParenthesis).append(Cons(Balance(0, 0), Nil())).foldRight1(_ ++ _) ==|
trivial |
fromParenthesis(y) ++ ys.map(fromParenthesis).append(Cons(Balance(0, 0), Nil())).foldRight1(_ ++ _) ==|
remove_null_balance(ys) |
fromParenthesis(y) ++ ys.map(fromParenthesis).foldRight1(_ ++ _) ==|
trivial |
xs.map(fromParenthesis).foldRight1(_ ++ _)
} qed
}
}
}.holds
def balanceToCounter(b: Balance): BigInt = b match {
case Balance(extraOpen, _) if extraOpen > 0 => -1
case Balance(BigInt(0), BigInt(0)) => 0
case Balance(_, extraClose) if extraClose >= 0 => extraClose
case _ => -1
}
def toCounter_updateCounter(b: Balance, p: Parenthesis): Boolean = {
require(b.nonNegative)
updateCounter(p, balanceToCounter(b)) == balanceToCounter(p +: b)
}.holds
def original_sequential_helper(xs: List[Parenthesis]): Boolean = {
decreases(xs)
val balance = xs.foldRight(Balance(0, 0))(_ +: _)
val counter = xs.foldRight(BigInt(0))(updateCounter)
{
balanceToCounter(balance) == counter && balance.nonNegative
} because {
xs match {
case Nil() => trivial
case Cons(p, ps) =>
check(original_sequential_helper(ps)) &&
check(ps.foldRight(Balance(0, 0))(_ +: _).nonNegative) &&
({
balanceToCounter(balance) ==|
trivial |
balanceToCounter(p +: ps.foldRight(Balance(0, 0))(_ +: _)) ==|
toCounter_updateCounter(ps.foldRight(Balance(0, 0))(_ +: _), p) |
updateCounter(p, balanceToCounter(ps.foldRight(Balance(0, 0))(_ +: _))) ==|
original_sequential_helper(ps) |
updateCounter(p, ps.foldRight(BigInt(0))(updateCounter)) ==|
trivial |
counter
} qed)
}
}
}.holds
def original_sequential_equivalence(xs: List[Parenthesis]): Boolean = {
{
isMatched(xs) == isMatchedSequential(xs)
} because {
check(original_sequential_helper(xs))
}
}.holds
def sequential_hybrid_equivalence(xs: List[Parenthesis]): Boolean = {
require(!xs.isEmpty())
(isMatchedSequential(xs) == isMatchedHybid(xs)) because {
{
xs.foldRight(Balance(0, 0))(_ +: _) ==|
folds_equivalence(xs) |
xs.foldRight(Balance(0, 0))(fromParenthesis(_) ++ _) ==|
foldRight_map_commutivity(xs) |
xs.map(fromParenthesis).foldRight(Balance(0, 0))(_ ++ _) ==|
foldRight_accumulator_equivalence(
xs.map(fromParenthesis), Balance(0, 0), (a: Balance, b: Balance) => a ++ b) |
xs.map(fromParenthesis).append(Cons(Balance(0, 0), Nil())).foldRight1(_ ++ _) ==|
remove_null_balance(xs) |
xs.map(fromParenthesis).foldRight1(_ ++ _)
} qed
}
}.holds
def hybrid_parallel_equivalence(tree: Tree[Parenthesis]): Boolean = {
(isMatchedHybid(tree.toList()) == isMatchedParallel(tree)) because {
{
tree.toList().map(fromParenthesis).foldRight1(_ ++ _) ==|
toList_map_commutativity(tree, fromParenthesis) |
tree.map(fromParenthesis).toList().foldRight1(_ ++ _) ==|
fold_foldRight1_equivalence(tree.map(fromParenthesis)) |
tree.map(fromParenthesis).fold(_ ++ _)
} qed
}
}.holds
/** Main lemma. States that the sequential and parallel versions are equivalent. */
def sequential_parallel_equivalence(tree: Tree[Parenthesis]): Boolean = {
(isMatched(tree.toList()) == isMatchedParallel(tree)) because {
check(original_sequential_equivalence(tree.toList())) &&
check(sequential_hybrid_equivalence(tree.toList())) &&
check(hybrid_parallel_equivalence(tree))
}
}.holds
}