forked from suragnair/alpha-zero-general
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtictactoe_pit.py
36 lines (28 loc) · 1001 Bytes
/
tictactoe_pit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import Arena
from MCTS import MCTS
from tictactoe.TicTacToeGame import TicTacToeGame, display
from tictactoe.keras.NNet import NNetWrapper as NNet
from tictactoe.TicTacToePlayers import *
import numpy as np
from utils import *
"""
use this script to play any two agents against each other, or play manually with
any agent.
"""
g = TicTacToeGame()
# all players
rp = RandomPlayer(g).play
hp = HumanTicTacToePlayer(g).play
# nnet players
n1 = NNet(g)
n1.load_checkpoint('./pretrained_models/tictactoe/keras/','best-25eps-25sim-10epch.pth.tar')
args1 = dotdict({'numMCTSSims': 25, 'cpuct':1.0})
mcts1 = MCTS(g, n1, args1)
n1p = lambda x: np.argmax(mcts1.getActionProb(x, temp=0))
#n2 = NNet(g)
#n2.load_checkpoint('./temp/tictactoe/','best.pth.tar')
#args2 = dotdict({'numMCTSSims': 25, 'cpuct':1.0})
#mcts2 = MCTS(g, n2, args2)
#n2p = lambda x: np.argmax(mcts2.getActionProb(x, temp=0))
arena = Arena.Arena(n1p, rp, g, display=display)
print("win/lost/draw", arena.playGames(100, verbose=True))