Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to visualize the heat maps #5

Open
FreeCoderCW opened this issue Sep 25, 2023 · 1 comment
Open

How to visualize the heat maps #5

FreeCoderCW opened this issue Sep 25, 2023 · 1 comment

Comments

@FreeCoderCW
Copy link

Excuse me. Thanks for your work, but I wonder how to visualize the heat maps in your paper. Could you please show the code or explain the method about it.

@exitudio
Copy link
Owner

Hi,
We use GradCAM to visualize where the model attend to. Since, we didn't clean up the visualization code so we remove it but you still can see our code from .ipynb in history.

Here is the part to generate GradCAM using this GradCAM lib

from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
def grad_cam_graph(target, plot=True, reshape_transform=lambda x:x):
    input_tensor = data_target[target].unsqueeze(dim=0)
    input_tensor = rearrange(input_tensor, 'b f j d -> b d f j')
    cam = GradCAM(model=model, target_layers=target_layers, use_cuda=True, reshape_transform=reshape_transform)
    targets = [ClassifierOutputTarget(124)]

    grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
    grayscale_cam = grayscale_cam[0, :]

    if plot:
        plot_activation_graph(data_target[target]*320, grayscale_cam)
    return grayscale_cam

def plot_gradcam(data):
    y_axis = ["nose","left_eye","right_eye","left_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_elbow","left_wrist","right_wrist","left_hip","right_hip","left_knee","right_knee","left_ankle","right_ankle"]
    fig, ax = plt.subplots(1,1)
    plt.yticks(fontsize=6)
    ax.set_yticks(np.arange(len(y_axis)))
    ax.set_yticklabels(y_axis)
    ax.imshow(data)

checkpoint = torch.load('/home/epinyoan/git/GaitSelfFormer/v2_all/save/unify/ablation_study/2022-10-04-12-40-45_11_nolocal_32_64_128_256_lr6e-3/checkpoint/last.pth')
# checkpoint = torch.load('/home/epinyoan/git/GaitSelfFormer/v2_all/save/unify/ablation_study/2022-10-04-13-50-45_12_globallocal_32_64_128_256_lr6e-3/checkpoint/last.pth')
# checkpoint = torch.load('/home/epinyoan/git/GaitSelfFormer/v2_all/save/unify/ablation_study/2022-10-11-15-30-34_25_no_l2norm_lr6e-3/checkpoint/last.pth')
model = SpatialTransformerTemporalConv(
            num_frame=60, in_chans=2, spatial_embed_dim=32, out_dim=128, num_joints=17, kernel_frame=31)
target_layers = [model.conv4]

model.load_state_dict(checkpoint, strict=True)
model = nn.Sequential(Rearrange('b d f j -> b f j d'), model)

# (191, (75, 2, 2, 18), (98, 0, 2, 18)),
grayscale_cam = grad_cam_graph((89, 2, 2, 36), plot=False)
# plt.imshow(grayscale_cam.T)
plot_gradcam(grayscale_cam.T)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants