-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg.py
87 lines (70 loc) · 2.82 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
from torch import nn
import math
"""
VGG architectures for CIFAR-10 and CIFAR-100 and Imagenet32
Adapted from https://github.com/chengyangfu/pytorch-vgg-cifar10/blob/master/vgg.py
For CIFAR-100 and Imagenet32, we simply use the same architecture as for CIFAR-10 but with the last layer adapted.
"""
class VGG_CIFAR(nn.Module):
def __init__(self, features, num_classes=10):
super(VGG_CIFAR, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(512, 512),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(512, 512),
nn.ReLU(True),
nn.Linear(512, num_classes),
)
# Initialize weights
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
m.bias.data.zero_()
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M',
512, 512, 512, 512, 'M'],
}
def _get_vgg(name, batch_norm=False, num_classes=10):
if name == 'vgg11':
m = VGG_CIFAR(make_layers(cfg['A'], batch_norm=batch_norm), num_classes=num_classes)
elif name == 'vgg13':
m = VGG_CIFAR(make_layers(cfg['B'], batch_norm=batch_norm), num_classes=num_classes)
elif name == 'vgg16':
m = VGG_CIFAR(make_layers(cfg['D'], batch_norm=batch_norm), num_classes=num_classes)
elif name == 'vgg19':
m = VGG_CIFAR(make_layers(cfg['E'], batch_norm=batch_norm), num_classes=num_classes)
return m
def get_cifar_vgg(name, batch_norm=False, num_classes=10):
assert num_classes in [10,100]
m = _get_vgg(name, batch_norm, num_classes)
return m
# def get_imagenet32_vgg(name, batch_norm=False):
# m = _get_vgg(name, batch_norm, num_classes=1000)
# return m