-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathtrain.py
149 lines (123 loc) · 3.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import print_function
import argparse
import torch.nn.functional as F
import torch.utils.data
import egg.core as core
from egg.zoo.summation.archs import Encoder, Receiver
from egg.zoo.summation.features import SequenceLoader
def get_params():
parser = argparse.ArgumentParser()
parser.add_argument(
"--batches_per_epoch",
type=int,
default=1000,
help="Number of batches per epoch (default: 1000)",
)
parser.add_argument(
"--sender_hidden",
type=int,
default=10,
help="Size of the hidden layer of Sender (default: 10)",
)
parser.add_argument(
"--receiver_hidden",
type=int,
default=10,
help="Size of the hidden layer of Receiver (default: 10)",
)
parser.add_argument(
"--sender_embedding",
type=int,
default=10,
help="Dimensionality of the embedding hidden layer for Sender (default: 10)",
)
parser.add_argument(
"--receiver_embedding",
type=int,
default=10,
help="Dimensionality of the embedding hidden layer for Receiver (default: 10)",
)
parser.add_argument(
"--sender_cell",
type=str,
default="rnn",
help="Type of the cell used for Sender {rnn, gru, lstm} (default: rnn)",
)
parser.add_argument(
"--receiver_cell",
type=str,
default="rnn",
help="Type of the cell used for Receiver {rnn, gru, lstm} (default: rnn)",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="GS temperature for the sender (default: 1.0)",
)
parser.add_argument(
"--max_n", type=int, default=10, help="Max n in a^nb^n(default: 10)"
)
args = core.init(parser)
return args
def loss(_sender_input, _message, _receiver_input, receiver_output, labels, _aux_input):
acc = (receiver_output.argmax(dim=1) == labels).detach().float()
loss = F.cross_entropy(receiver_output, labels)
return loss, {"acc": acc}
if __name__ == "__main__":
opts = get_params()
device = torch.device("cuda" if opts.cuda else "cpu")
train_loader = SequenceLoader(
max_n=opts.max_n,
batch_size=opts.batch_size,
batches_per_epoch=opts.batches_per_epoch,
)
test_loader = SequenceLoader(
max_n=opts.max_n,
batch_size=opts.batch_size,
batches_per_epoch=opts.batches_per_epoch,
seed=7,
)
encoder = Encoder(
n_hidden=opts.sender_hidden,
embed_dim=opts.sender_embedding,
cell=opts.sender_cell,
vocab_size=3,
) # only 3 symbols in the incoming data
sender = core.RnnSenderGS(
encoder,
opts.vocab_size,
opts.sender_embedding,
opts.sender_hidden,
cell=opts.sender_cell,
max_len=opts.max_len,
temperature=opts.temperature,
)
receiver = Receiver(opts.receiver_hidden)
receiver = core.RnnReceiverGS(
receiver,
opts.vocab_size,
opts.receiver_embedding,
opts.receiver_hidden,
cell=opts.receiver_cell,
)
game = core.SenderReceiverRnnGS(sender, receiver, loss)
optimizer = core.build_optimizer(game.parameters())
trainer = core.Trainer(
game=game,
optimizer=optimizer,
train_data=train_loader,
validation_data=test_loader,
)
trainer.train(n_epochs=opts.n_epochs)
sender_inputs, messages, _, receiver_outputs, labels = core.dump_interactions(
game, test_loader, gs=True, device=device, variable_length=True
)
for (seq, l), message, output, label in zip(
sender_inputs, messages, receiver_outputs, labels
):
print(f"{seq[:l]} -> {message} -> {output.argmax()} (label = {label})")
core.close()