-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_ppo.py
291 lines (247 loc) · 10.9 KB
/
train_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
from collections import deque
from test import evaluate
import numpy as np
import torch
import wandb
from level_replay import algo, utils
from level_replay.arguments import parser
from level_replay.envs import make_lr_venv
from level_replay.model import model_for_env_name
from level_replay.storage import RolloutStorage
from level_replay.utils import ppo_normalise_reward, min_max_normalise_reward
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["WANDB_API_KEY"] = "anon"
def train(args, seeds):
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda:0" if args.cuda else "cpu")
if "cuda" in device.type:
print("Using CUDA\n")
torch.set_num_threads(1)
wandb.init(
settings=wandb.Settings(start_method="fork"),
project=args.wandb_project,
entity="anon",
config=vars(args),
tags=["ppo"] + (args.wandb_tags.split(",") if args.wandb_tags else []),
group=args.wandb_group,
)
wandb.run.name = f"ppo-{args.env_name}-{args.num_train_seeds}-levels"
utils.seed(args.seed)
# Configure actor envs
start_level = 0
if args.full_train_distribution:
num_levels = 0
level_sampler_args = None
seeds = None
else:
num_levels = 1
level_sampler_args = dict(
num_actors=args.num_processes,
strategy=args.level_replay_strategy,
replay_schedule=args.level_replay_schedule,
score_transform=args.level_replay_score_transform,
temperature=args.level_replay_temperature,
eps=args.level_replay_eps,
rho=args.level_replay_rho,
nu=args.level_replay_nu,
alpha=args.level_replay_alpha,
staleness_coef=args.staleness_coef,
staleness_transform=args.staleness_transform,
staleness_temperature=args.staleness_temperature,
)
envs, level_sampler = make_lr_venv(
num_envs=args.num_processes,
env_name=args.env_name,
seeds=seeds,
device=device,
num_levels=num_levels,
start_level=start_level,
no_ret_normalization=args.no_ret_normalization,
distribution_mode=args.distribution_mode,
paint_vel_info=args.paint_vel_info,
use_sequential_levels=args.use_sequential_levels,
level_sampler_args=level_sampler_args,
)
# is_minigrid = args.env_name.startswith("MiniGrid")
actor_critic = model_for_env_name(args, envs)
actor_critic.to(device)
rollouts = RolloutStorage(
args.num_steps,
args.num_processes,
envs.observation_space.shape,
envs.action_space,
actor_critic.recurrent_hidden_state_size,
)
agent = algo.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm,
env_name=args.env_name,
)
level_seeds = torch.zeros(args.num_processes)
if level_sampler:
obs, level_seeds = envs.reset()
else:
obs = envs.reset()
level_seeds = level_seeds.unsqueeze(-1)
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards: deque = deque(maxlen=10)
num_updates = int(args.num_env_steps) // args.num_steps // args.num_processes
count = 0
for j in range(num_updates):
actor_critic.train()
for step in range(args.num_steps):
count += 1
# Sample actions
with torch.no_grad():
obs_id = rollouts.obs[step]
value, action, action_log_dist, recurrent_hidden_states = actor_critic.act(
obs_id, rollouts.recurrent_hidden_states[step], rollouts.masks[step]
)
action_log_prob = action_log_dist.gather(-1, action)
# Observe reward and next obs
obs, reward, done, infos = envs.step(action)
reward = torch.from_numpy(reward)
# Reset all done levels by sampling from level sampler
for i, info in enumerate(infos):
if "episode" in info.keys():
episode_reward = info["episode"]["r"]
episode_rewards.append(episode_reward)
ppo_normalised_reward = ppo_normalise_reward(episode_reward, args.env_name)
min_max_normalised_reward = min_max_normalise_reward(episode_reward, args.env_name)
wandb.log(
{
"Train Episode Returns": episode_reward,
"Train Episode Returns (normalised)": ppo_normalised_reward,
"Train Episode Returns (ppo normalised)": ppo_normalised_reward,
"Train Episode Returns (min-max normalised)": min_max_normalised_reward,
},
step=count * args.num_processes,
)
if args.log_per_seed_stats:
plot_level_returns(level_seeds, episode_reward, i, step=count * args.num_processes)
if level_sampler:
level_seed = info["level_seed"]
if level_seeds[i][0] != level_seed:
level_seeds[i][0] = level_seed
if args.log_per_seed_stats:
new_episode(value, level_seed, i, step=count * args.num_processes)
# If done then clean the history of observations.
masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if "bad_transition" in info.keys() else [1.0] for info in infos]
)
rollouts.insert(
obs,
recurrent_hidden_states,
action,
action_log_prob,
action_log_dist,
value,
reward,
masks,
bad_masks,
level_seeds,
)
with torch.no_grad():
obs_id = rollouts.obs[-1]
next_value = actor_critic.get_value(
obs_id, rollouts.recurrent_hidden_states[-1], rollouts.masks[-1]
).detach()
rollouts.compute_returns(next_value, args.gamma, args.gae_lambda)
# Update level sampler
if level_sampler:
level_sampler.update_with_rollouts(rollouts)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
wandb.log({"Value Loss": value_loss}, step=count * args.num_processes)
rollouts.after_update()
if level_sampler:
level_sampler.after_update()
# Log stats every log_interval updates or if it is the last update
if (j % args.log_interval == 0 and len(episode_rewards) > 1) or j == num_updates - 1:
mean_eval_rewards = np.mean(evaluate(args, actor_critic, args.num_test_seeds, device))
mean_train_rewards = np.mean(
evaluate(
args,
actor_critic,
args.num_test_seeds,
device,
start_level=0,
num_levels=args.num_train_seeds,
seeds=seeds,
)
)
test_ppo_normalised_reward = ppo_normalise_reward(mean_eval_rewards, args.env_name)
train_ppo_normalised_reward = ppo_normalise_reward(mean_train_rewards, args.env_name)
test_min_max_normalised_reward = min_max_normalise_reward(mean_eval_rewards, args.env_name)
train_min_max_normalised_reward = min_max_normalise_reward(mean_train_rewards, args.env_name)
wandb.log(
{
"Test Evaluation Returns": mean_eval_rewards,
"Train Evaluation Returns": mean_train_rewards,
"Generalization Gap:": mean_train_rewards - mean_eval_rewards,
"Test Evaluation Returns (normalised)": test_ppo_normalised_reward,
"Train Evaluation Returns (normalised)": train_ppo_normalised_reward,
"Test Evaluation Returns (ppo normalised)": test_ppo_normalised_reward,
"Train Evaluation Returns (ppo normalised)": train_ppo_normalised_reward,
"Test Evaluation Returns (min-max normalised)": test_min_max_normalised_reward,
"Train Evaluation Returns (min-max normalised)": train_min_max_normalised_reward,
},
step=count * args.num_processes,
)
if j == num_updates - 1:
print(f"\nLast update: Evaluating on {args.final_num_test_seeds} test levels...\n ")
final_eval_episode_rewards = evaluate(args, actor_critic, args.final_num_test_seeds, device)
mean_final_eval_episode_rewards = np.mean(final_eval_episode_rewards)
median_final_eval_episide_rewards = np.median(final_eval_episode_rewards)
print("Mean Final Evaluation Rewards: ", mean_final_eval_episode_rewards)
print("Median Final Evaluation Rewards: ", median_final_eval_episide_rewards)
wandb.log(
{
"Mean Final Evaluation Rewards": mean_final_eval_episode_rewards,
"Median Final Evaluation Rewards": median_final_eval_episide_rewards,
}
)
if args.save_model:
print(f"Saving model to {args.model_path}")
if "models" not in os.listdir():
os.mkdir("models")
torch.save(
{
"model_state_dict": actor_critic.state_dict(),
"args": vars(args),
},
args.model_path,
)
wandb.save(args.model_path)
def generate_seeds(num_seeds, base_seed=0):
return [base_seed + i for i in range(num_seeds)]
def load_seeds(seed_path):
seed_path = os.path.expandvars(os.path.expanduser(seed_path))
seeds = open(seed_path).readlines()
return [int(s) for s in seeds]
def new_episode(value, level_seed, i, step):
wandb.log({f"Start State Value Estimate for Level {level_seed}": value[i].item()}, step=step)
def plot_level_returns(level_seeds, episode_reward, i, step):
seed = level_seeds[i][0].item()
wandb.log({f"Empirical Return for Level {seed}": episode_reward}, step=step)
if __name__ == "__main__":
args = parser.parse_args()
if args.seed_path:
train_seeds = load_seeds(args.seed_path)
else:
train_seeds = generate_seeds(args.num_train_seeds)
train(args, train_seeds)