This repository has been archived by the owner on Nov 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathtrain_f0_vq.py
executable file
·217 lines (167 loc) · 8.66 KB
/
train_f0_vq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Adapted from https://github.com/jik876/hifi-gan
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import os
import time
import argparse
import json
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from dataset import F0Dataset, get_dataset_filelist
from models import Quantizer
from utils import scan_checkpoint, load_checkpoint, save_checkpoint, build_env, \
AttrDict
torch.backends.cudnn.benchmark = True
def train(rank, a, h):
if h.num_gpus > 1:
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'], rank=rank)
torch.cuda.manual_seed(h.seed)
device = torch.device('cuda:{:d}'.format(rank))
generator = Quantizer(h).to(device)
if rank == 0:
print(generator)
os.makedirs(a.checkpoint_path, exist_ok=True)
print("checkpoints directory : ", a.checkpoint_path)
cp_g = None
if os.path.isdir(a.checkpoint_path):
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
steps = 0
if cp_g is None:
last_epoch = -1
state_dict_g = None
else:
state_dict_g = load_checkpoint(cp_g, device)
generator.load_state_dict(state_dict_g['generator'])
steps = state_dict_g['steps'] + 1
last_epoch = state_dict_g['epoch']
if h.num_gpus > 1:
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
if state_dict_g is not None:
optim_g.load_state_dict(state_dict_g['optim_g'])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
training_filelist, validation_filelist = get_dataset_filelist(h)
trainset = F0Dataset(training_filelist, h.segment_size, h.sampling_rate, n_cache_reuse=0, device=device,
multispkr=h.get('multispkr', None), f0_stats=h.get('f0_stats', None),
f0_normalize=h.get('f0_normalize', False), f0_feats=h.get('f0_feats', False),
f0_median=h.get('f0_median', False), f0_interp=h.get('f0_interp', False),
vqvae=h.get('code_vq_params', False))
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False, sampler=train_sampler,
batch_size=h.batch_size, pin_memory=True, drop_last=True)
if rank == 0:
validset = F0Dataset(validation_filelist, h.segment_size, h.sampling_rate, False, n_cache_reuse=0,
device=device, multispkr=h.get('multispkr', None), f0_stats=h.get('f0_stats', None),
f0_normalize=h.get('f0_normalize', False), f0_feats=h.get('f0_feats', False),
f0_median=h.get('f0_median', False), f0_interp=h.get('f0_interp', False),
vqvae=h.get('code_vq_params', False))
validation_loader = DataLoader(validset, num_workers=h.num_workers, shuffle=False, sampler=None,
batch_size=h.batch_size, pin_memory=True, drop_last=True)
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
generator.train()
for epoch in range(max(0, last_epoch), a.training_epochs):
if rank == 0:
start = time.time()
print("Epoch: {}".format(epoch + 1))
if h.num_gpus > 1:
train_sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
if rank == 0:
start_b = time.time()
x, y, _ = batch
y = torch.autograd.Variable(y.to(device, non_blocking=False))
x = {k: torch.autograd.Variable(v.to(device, non_blocking=False)) for k, v in x.items()}
y_g_hat, commit_loss, metrics = generator(**x)
f0_commit_loss = commit_loss[0]
f0_metrics = metrics[0]
# Generator
optim_g.zero_grad()
# L2 Reconstruction Loss
loss_recon = F.mse_loss(y_g_hat, y)
loss_recon += f0_commit_loss * h.get('lambda_commit', None)
loss_recon.backward()
optim_g.step()
if rank == 0:
# STDOUT logging
if steps % a.stdout_interval == 0:
print('Steps : {:d}, Gen Loss Total : {:4.3f}, s/b : {:4.3f}'.format(steps, loss_recon,
time.time() - start_b))
# checkpointing
if steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict(),
'optim_g': optim_g.state_dict(), 'steps': steps, 'epoch': epoch})
# Tensorboard summary logging
if steps % a.summary_interval == 0:
sw.add_scalar("training/gen_loss_total", loss_recon, steps)
sw.add_scalar("training/commit_error", f0_commit_loss, steps)
sw.add_scalar("training/used_curr", f0_metrics['used_curr'].item(), steps)
sw.add_scalar("training/entropy", f0_metrics['entropy'].item(), steps)
sw.add_scalar("training/usage", f0_metrics['usage'].item(), steps)
# Validation
if steps % a.validation_interval == 0: # and steps != 0:
generator.eval()
torch.cuda.empty_cache()
val_err_tot = 0
with torch.no_grad():
for j, batch in enumerate(validation_loader):
x, y, _ = batch
x = {k: v.to(device, non_blocking=False) for k, v in x.items()}
y = torch.autograd.Variable(y.to(device, non_blocking=False))
y_g_hat, commit_loss, _ = generator(**x)
f0_commit_loss = commit_loss[0]
val_err_tot += f0_commit_loss * h.get('lambda_commit', None)
val_err_tot += F.mse_loss(y_g_hat, y).item()
val_err = val_err_tot / (j + 1)
sw.add_scalar("validation/mel_spec_error", val_err, steps)
sw.add_scalar("validation/commit_error", f0_commit_loss, steps)
generator.train()
steps += 1
if steps >= a.training_steps:
break
scheduler_g.step()
if rank == 0:
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
if rank == 0:
print('Finished training')
def main():
print('Initializing Training Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--group_name', default=None)
parser.add_argument('--checkpoint_path', default='cp_hifigan')
parser.add_argument('--config', default='')
parser.add_argument('--training_epochs', default=10000, type=int)
parser.add_argument('--training_steps', default=400000, type=int)
parser.add_argument('--stdout_interval', default=5, type=int)
parser.add_argument('--checkpoint_interval', default=10000, type=int)
parser.add_argument('--summary_interval', default=100, type=int)
parser.add_argument('--validation_interval', default=1000, type=int)
parser.add_argument('--fine_tuning', default=False, type=bool)
parser.add_argument('--local_rank', default=0, type=int)
a = parser.parse_args()
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, 'config.json', a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available() and 'WORLD_SIZE' in os.environ:
torch.cuda.manual_seed(h.seed)
h.num_gpus = int(os.environ['WORLD_SIZE'])
h.batch_size = int(h.batch_size / h.num_gpus)
print('Batch size per GPU :', h.batch_size)
else:
pass
train(a.local_rank, a, h)
if __name__ == '__main__':
main()