From 2523fdd829c0d740c8a9610ee96c5e1628ad6907 Mon Sep 17 00:00:00 2001 From: Ivan Kitanovski Date: Tue, 30 Apr 2019 13:46:32 +0200 Subject: [PATCH] Updated logging and gradlew permissons --- build.gradle | 3 +-- gradlew | 0 .../com/github/fairsearch/deltr/Trainer.java | 20 +++++++++---------- 3 files changed, 10 insertions(+), 13 deletions(-) mode change 100644 => 100755 gradlew diff --git a/build.gradle b/build.gradle index e95dedd..ee51f9d 100644 --- a/build.gradle +++ b/build.gradle @@ -59,8 +59,7 @@ publishing { mavenJava(MavenPublication) { groupId 'com.github.fair-search' artifactId 'fairsearchdeltr-java' - version '1.0.0' - + version '0.0.1' from components.java } } diff --git a/gradlew b/gradlew old mode 100644 new mode 100755 diff --git a/src/main/java/com/github/fairsearch/deltr/Trainer.java b/src/main/java/com/github/fairsearch/deltr/Trainer.java index 5a2543d..f993e7d 100644 --- a/src/main/java/com/github/fairsearch/deltr/Trainer.java +++ b/src/main/java/com/github/fairsearch/deltr/Trainer.java @@ -91,14 +91,14 @@ public double[] train(int[] queryIds, int[] protectedElementFeature, INDArray fe }); - LOGGER.info("pred: " + (System.currentTimeMillis() - stepStart)); + LOGGER.info(String.format("Prediction computed in %d ms", (System.currentTimeMillis() - stepStart))); stepStart = System.currentTimeMillis(); //get the cost/loss for all queries TrainStep trainStep = calculateCost(trainingScores, predictedScores, queryIds, protectedElementFeature, dataPerQueryPredicted); - LOGGER.info(" cost: " + (System.currentTimeMillis() - stepStart)); + LOGGER.info("Cost: " + (System.currentTimeMillis() - stepStart)); stepStart = System.currentTimeMillis(); INDArray J = trainStep.getCost().add(predictedScores.mul(predictedScores).mul(this.lambda)); @@ -107,7 +107,7 @@ public double[] train(int[] queryIds, int[] protectedElementFeature, INDArray fe INDArray grad = calculateGradient(featureMatrix, trainingScores, predictedScores, queryIds, protectedElementFeature, dataPerQueryPredicted); - LOGGER.info(" grad: " + (System.currentTimeMillis() - stepStart)); + LOGGER.info(String.format("Gradient computed in %d ms", (System.currentTimeMillis() - stepStart))); //add additional items in trainStep trainStep.setOmega(omega); @@ -125,7 +125,7 @@ public double[] train(int[] queryIds, int[] protectedElementFeature, INDArray fe this.log.add(trainStep); // log iteration - LOGGER.info("Iteration-" + t +":" + (System.currentTimeMillis() - startTime)); + LOGGER.info(String.format("Iteration %d done in %d ms", t, (System.currentTimeMillis() - startTime))); } @@ -160,13 +160,13 @@ private INDArray calculateGradient(INDArray trainingFeatures, INDArray trainingS //L2 long stepTime = System.currentTimeMillis(); if(i % 100 == 0) { - LOGGER.info(" grad-step-1:" + (System.currentTimeMillis()-stepTime)); + LOGGER.info(String.format("Gradient Step 1 computed in %d ms", (System.currentTimeMillis()-stepTime))); stepTime = System.currentTimeMillis(); } double l2 = 1.0 / Transforms.exp(dataPerQueryPredicted.get(keyGen(q, predictedScores))) .sumNumber().doubleValue(); if(i % 100 == 0) { - LOGGER.info(" grad-step-2:" + (System.currentTimeMillis()-stepTime)); + LOGGER.info(String.format("Gradient Step 2 computed in %d ms", (System.currentTimeMillis()-stepTime))); stepTime = System.currentTimeMillis(); } @@ -175,7 +175,7 @@ private INDArray calculateGradient(INDArray trainingFeatures, INDArray trainingS .mmul(Transforms.exp(dataPerQueryPredicted.get(keyGen(q, predictedScores)))) .mul(l2); if(i % 100 == 0) { - LOGGER.info(" grad-step-3:" + (System.currentTimeMillis()-stepTime)); + LOGGER.info(String.format("Gradient Step 3 computed in %d ms", (System.currentTimeMillis()-stepTime))); stepTime = System.currentTimeMillis(); } //L1 @@ -187,7 +187,7 @@ private INDArray calculateGradient(INDArray trainingFeatures, INDArray trainingS //L deriv res = res.div(Math.log(predictedScores.length())); if(i % 100 == 0) { - LOGGER.info(" grad-step-4:" + (System.currentTimeMillis()-stepTime)); + LOGGER.info(String.format("Gradient Step 4 computed in %d ms", (System.currentTimeMillis()-stepTime))); stepTime = System.currentTimeMillis(); } if(!this.noExposure) { @@ -197,8 +197,7 @@ private INDArray calculateGradient(INDArray trainingFeatures, INDArray trainingS .mul(exposureDiff(predictedScores, queryIds, q, protectedIdxs)).transpose()); } if(i % 100 == 0) { - LOGGER.info(" grad-step-5:" + (System.currentTimeMillis()-stepTime)); - stepTime = System.currentTimeMillis(); + LOGGER.info(String.format("Gradient Step 5 computed in %d ms", (System.currentTimeMillis()-stepTime))); } gradient.putRow(i, res); }); @@ -225,7 +224,6 @@ private INDArray normalizedToppProtDerivPerGroupDiff(INDArray trainingScores, IN predictionsGroup.getProtectedItemsPerQuery(), predictionsGroup.getJudgementsPerQuery()); -// return u2.sub(u3); this.normalizedToppProtDerivPerGroupDiffCache.put(key, u2.sub(u3)); } //