-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
125 lines (105 loc) · 3.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.optim as optim
from VGG13 import vgg13
from NEUCLSDataLoad import NEUCLASSDATA
import numpy as np
import os
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
BATCH_SIZE = 20
NUM_EPOCHS = 50
LEARNING_RATE = 0.001
list_name = []
loss_value = []
acc_value = []
original_layer = [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
model = vgg13(original_layer).to(device)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=0.9)
train_data, test_data = NEUCLASSDATA()._get_data_from_index()
train_data_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)
test_data_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True)
def _train_model():
max_acc = 0
for epoch in range(1, NUM_EPOCHS + 1):
lr = optimizer.param_groups[0]['lr']
print("Epoch:%s --> lr = %s" % (str(epoch), str(lr)))
temp_all_loss = 0
loss_nums = 0
model.train()
for data in train_data_loader:
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels).to(device)
loss.backward()
optimizer.step()
temp_all_loss += loss.item()
loss_nums += 1
print("Epoch: %s (AllEpoch: %s) --> loss_value is %s" % (str(epoch), str(NUM_EPOCHS), str(loss.item())))
epoch_avg_loss = temp_all_loss / loss_nums
loss_value.append(epoch_avg_loss)
print("Epoch: %s --> loss_value is % s" % (str(epoch), str(epoch_avg_loss)))
_adjust_learning_rate(epoch)
acc = _test_model()
acc_value.append(acc)
print("Epoch %s --> acc: %s" %(str(epoch), str(acc)))
if acc > max_acc:
_save_model()
max_acc = acc
def _test_model():
with torch.no_grad():
total = 0
correct = 0
model.eval()
for data in test_data_loader:
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
print("-------------------------predicted-----------------------")
print(predicted)
print("=========================label===========================")
print(labels)
total += labels.size(0)
print("========================correct-sum======================")
print((predicted == labels).sum().item())
correct += (predicted == labels).sum().item()
return round((correct / total) * 100, 2)
def _adjust_learning_rate(epoch):
if epoch <= 10:
lr = 0.001
else:
lr = 0.0001
optimizer.param_groups[0]['lr'] = lr
def _get_name():
for name in model.state_dict():
list_name.append(name)
def _save_model():
path = "./SaveInfo/VGG13/Para/Original/"
if not os.path.exists(path):
os.makedirs(path)
for name in list_name:
temp_np = model.state_dict()[name].cpu().numpy()
np.save(path+"%s.ndim" % (name), temp_np)
print("model saved in {}".format(path))
def _save_result():
path = "./SaveInfo/VGG13/LOSS_ACC/"
if not os.path.exists(path):
os.makedirs(path)
with open(path+"resNet4-lr0001-epoch50-73-loss.txt", 'w') as fw:
for value in loss_value:
fw.write(str(value) + "-")
fw.close()
with open(path+"resNet4-lr0001-epoch50-73-acc.txt", 'w') as fw:
for value in acc_value:
fw.write(str(value)+"-")
fw.close()
if __name__ == "__main__":
print(model)
_get_name()
_save_model()
# _train_model()
# _save_result()