-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5_ML_model_training_job.py
87 lines (62 loc) · 3.46 KB
/
5_ML_model_training_job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from pyspark.sql import SparkSession
spark = SparkSession\
.builder\
.appName("Airline ML")\
.config("spark.hadoop.fs.s3a.aws.credentials.provider","org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider")\
.config("spark.executor.memory","16g")\
.config("spark.executor.cores","4")\
.config("spark.driver.memory","6g")\
.config("spark.executor.instances","5")\
.config("spark.hadoop.fs.s3a.metadatastore.impl","org.apache.hadoop.fs.s3a.s3guard.NullMetadataStore")\
.config("spark.hadoop.fs.s3a.delegation.token.binding","")\
.getOrCreate()
# .config("spark.hadoop.fs.s3a.access.key",os.getenv("AWS_ACCESS_KEY"))\
# .config("spark.hadoop.fs.s3a.secret.key",os.getenv("AWS_SECRET_KEY"))\
flight_df=spark.read.parquet(
"s3a://ml-field/demo/flight-analysis/data/airline_parquet_2/",
)
flight_df = flight_df.na.drop() #.limit(1000000) #this limit is here for the demo
from pyspark.sql.types import StringType
from pyspark.sql.functions import udf,substring
convert_time_to_hour = udf(lambda x: x if len(x) == 4 else "0{}".format(x),StringType())
#df.withColumn('COLUMN_NAME_fix',udf1('COLUMN_NAME')).show()
flight_df = flight_df.withColumn('CRS_DEP_HOUR', substring(convert_time_to_hour("CRS_DEP_TIME"),0,2))
#flight_df = flight_df.withColumn('CRS_ARR_HOUR', substring(convert_time_to_hour("CRS_ARR_TIME"),0,2))
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
numeric_cols = ["CRS_ELAPSED_TIME","DISTANCE"]
op_carrier_indexer = StringIndexer(inputCol ='OP_CARRIER', outputCol = 'OP_CARRIER_INDEXED',handleInvalid="keep")
op_carrier_encoder = OneHotEncoder(inputCol ='OP_CARRIER_INDEXED', outputCol='OP_CARRIER_ENCODED')
origin_indexer = StringIndexer(inputCol ='ORIGIN', outputCol = 'ORIGIN_INDEXED',handleInvalid="keep")
origin_encoder = OneHotEncoder(inputCol ='ORIGIN_INDEXED', outputCol='ORIGIN_ENCODED')
dest_indexer = StringIndexer(inputCol ='DEST', outputCol = 'DEST_INDEXED',handleInvalid="keep")
dest_encoder = OneHotEncoder(inputCol ='DEST_INDEXED', outputCol='DEST_ENCODED')
crs_dep_hour_indexer = StringIndexer(inputCol ='CRS_DEP_HOUR', outputCol = 'CRS_DEP_HOUR_INDEXED',handleInvalid="keep")
crs_dep_hour_encoder = OneHotEncoder(inputCol ='CRS_DEP_HOUR_INDEXED', outputCol='CRS_DEP_HOUR_ENCODED')
input_cols=[
'OP_CARRIER_ENCODED',
'ORIGIN_ENCODED',
'DEST_ENCODED',
'CRS_DEP_HOUR_ENCODED'] + numeric_cols
assembler = VectorAssembler(
inputCols = input_cols,
outputCol = 'features')
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
lr = LogisticRegression(featuresCol = 'features', labelCol = 'CANCELLED', maxIter=100)
pipeline = Pipeline(stages=[op_carrier_indexer,
op_carrier_encoder,
origin_indexer,
origin_encoder,
dest_indexer,
dest_encoder,
crs_dep_hour_indexer,
crs_dep_hour_encoder,
assembler,
lr])
(train, test) = flight_df.randomSplit([0.7, 0.3])
lrModel = pipeline.fit(train)
from pyspark.ml.evaluation import BinaryClassificationEvaluator
predictionslr = lrModel.transform(test)
evaluator = BinaryClassificationEvaluator(labelCol="CANCELLED",metricName="areaUnderROC")
evaluator.evaluate(predictionslr)
#lrModel.write().overwrite().save("s3a://ml-field/demo/flight-analysis/data/models/lr_model")