-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path.project-metadata.yaml
59 lines (52 loc) · 1.43 KB
/
.project-metadata.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
name: Detecting Defects with Semantic Segmentation
description: >-
A demonstration of how semantic segmentation can be used to detect defects in manufacturing images.
author: Cloudera Inc.
specification_version: 1.0
prototype_version: 2.0
date: "2022-11-29"
environment_variables:
KAGGLE_USERNAME:
default: ""
description: "Optional Kaggle account username"
KAGGLE_KEY:
default: ""
description: "Optional Kaggle account API token associated with username provided above"
runtimes:
- editor: Workbench
kernel: Python 3.9
edition: Standard
tasks:
- type: run_session
name: Install Dependencies
script: scripts/install_dependencies.py
cpu: 2
memory: 4
- type: run_session
name: Prepare Data
script: scripts/prepare_data.py
cpu: 2
memory: 4
- type: run_session
name: Create model training jobs
script: scripts/create_train_experiments.py
cpu: 1
memory: 2
- type: start_application
short_summary: Starting tensorboard
name: Tensorboard Training Logs
subdomain: tensorboard
script: scripts/launch_tensorboard.py
environment_variables:
TASK_TYPE: START_APPLICATION
cpu: 1
memory: 2
- type: start_application
short_summary: Starting streamlit application
name: Manufacturing Defect Detection
subdomain: streamlit
script: scripts/launch_app.py
environment_variables:
TASK_TYPE: START_APPLICATION
cpu: 2
memory: 4