-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathplot.py
203 lines (163 loc) · 7.28 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import itertools
import os
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
def plotSubset(model, x_in, x_reconstructed, n=10, cols=None, outlines=True,
save=True, name="subset", outdir="."):
"""Util to plot subset of inputs and reconstructed outputs"""
n = min(n, x_in.shape[0])
cols = (cols if cols else n)
rows = 2 * int(np.ceil(n / cols)) # doubled b/c input & reconstruction
plt.figure(figsize = (cols * 2, rows * 2))
dim = int(model.architecture[0]**0.5) # assume square images
def drawSubplot(x_, ax_):
plt.imshow(x_.reshape([dim, dim]), cmap="Greys")
if outlines:
ax_.get_xaxis().set_visible(False)
ax_.get_yaxis().set_visible(False)
else:
ax_.set_axis_off()
for i, x in enumerate(x_in[:n], 1):
# display original
ax = plt.subplot(rows, cols, i) # rows, cols, subplot numbered from 1
drawSubplot(x, ax)
for i, x in enumerate(x_reconstructed[:n], 1):
# display reconstruction
ax = plt.subplot(rows, cols, i + cols * (rows / 2))
drawSubplot(x, ax)
# plt.show()
if save:
title = "{}_batch_{}_round_{}_{}.png".format(
model.datetime, "_".join(map(str, model.architecture)), model.step, name)
plt.savefig(os.path.join(outdir, title), bbox_inches="tight")
def plotInLatent(model, x_in, labels=[], range_=None, title=None,
save=True, name="data", outdir="."):
"""Util to plot points in 2-D latent space"""
assert model.architecture[-1] == 2, "2-D plotting only works for latent space in R2!"
title = (title if title else name)
mus, _ = model.encode(x_in)
ys, xs = mus.T
plt.figure()
plt.title("round {}: {} in latent space".format(model.step, title))
kwargs = {'alpha': 0.8}
classes = set(labels)
if classes:
colormap = plt.cm.rainbow(np.linspace(0, 1, len(classes)))
kwargs['c'] = [colormap[i] for i in labels]
# make room for legend
ax = plt.subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
handles = [mpatches.Circle((0,0), label=class_, color=colormap[i])
for i, class_ in enumerate(classes)]
ax.legend(handles=handles, shadow=True, bbox_to_anchor=(1.05, 0.45),
fancybox=True, loc='center left')
plt.scatter(xs, ys, **kwargs)
if range_:
plt.xlim(*range_)
plt.ylim(*range_)
# plt.show()
if save:
title = "{}_latent_{}_round_{}_{}.png".format(
model.datetime, "_".join(map(str, model.architecture)),
model.step, name)
plt.savefig(os.path.join(outdir, title), bbox_inches="tight")
def exploreLatent(model, nx=20, ny=20, range_=(-4, 4), ppf=False,
save=True, name="explore", outdir="."):
"""Util to explore low-dimensional manifold of latent space"""
assert model.architecture[-1] == 2, "2-D plotting only works for latent space in R2!"
# linear range; else ppf (percent point function) == inverse CDF from [0, 1]
range_ = ((0, 1) if ppf else range_)
min_, max_ = range_
dim = int(model.architecture[0]**0.5)
# complex number steps act like np.linspace
# row, col indices (i, j) correspond to graph coords (y, x)
# rollaxis enables iteration over latent space 2-tuples
zs = np.rollaxis(np.mgrid[max_:min_:ny*1j, min_:max_:nx*1j], 0, 3)
if ppf: # sample from prior ~ N(0, 1)
from scipy.stats import norm
DELTA = 1E-16 # delta to avoid +/- inf at 0, 1 boundaries
zs = np.array([norm.ppf(np.clip(z, DELTA, 1 - DELTA)) for z in zs])
canvas = np.vstack([np.hstack([x.reshape([dim, dim])
for x in model.decode(z_row)])
for z_row in iter(zs)])
plt.figure(figsize=(nx / 2, ny / 2))
# `extent` sets axis labels corresponding to latent space coords
plt.imshow(canvas, cmap="Greys", aspect="auto", extent=(range_ * 2))
if ppf: # no axes
ax = plt.gca()
ax.set_frame_on(False)
ax.set_xticks([])
ax.set_yticks([])
plt.axis("off")
plt.tight_layout()
# plt.show()
if save:
title = "{}_latent_{}_round_{}_{}.png".format(
model.datetime, "_".join(map(str, model.architecture)), model.step, name)
plt.savefig(os.path.join(outdir, title), bbox_inches="tight")
def interpolate(model, latent_1, latent_2, n=20, save=True, name="interpolate", outdir="."):
"""Util to interpolate between two points in n-dimensional latent space"""
zs = np.array([np.linspace(start, end, n) # interpolate across every z dimension
for start, end in zip(latent_1, latent_2)]).T
xs_reconstructed = model.decode(zs)
dim = int(model.architecture[0]**0.5)
canvas = np.hstack([x.reshape([dim, dim]) for x in xs_reconstructed])
plt.figure(figsize = (n, 2))
plt.imshow(canvas, cmap="Greys")
plt.axis("off")
plt.tight_layout()
# plt.show()
if save:
title = "{}_latent_{}_round_{}_{}".format(
model.datetime, "_".join(map(str, model.architecture)), model.step, name)
plt.savefig(os.path.join(outdir, title), bbox_inches="tight")
def justMNIST(x, save=True, name="digit", outdir="."):
"""Plot individual pixel-wise MNIST digit vector x"""
DIM = 28
TICK_SPACING = 4
fig, ax = plt.subplots(1,1)
plt.imshow(x.reshape([DIM, DIM]), cmap="Greys",
extent=((0, DIM) * 2), interpolation="none")
ax.xaxis.set_major_locator(ticker.MultipleLocator(TICK_SPACING))
ax.yaxis.set_major_locator(ticker.MultipleLocator(TICK_SPACING))
# plt.show()
if save:
title = "mnist_{}.png".format(name)
plt.savefig(os.path.join(outdir, title), bbox_inches="tight")
def morph(model, zs, n_per_morph=10, loop=True, save=True, name="morph", outdir="."):
"""Plot frames of morph between zs (np.array of 2+ latent points)"""
assert len(zs) > 1, "Must specify at least two latent pts for morph!"
dim = int(model.architecture[0]**0.5) # assume square images
def pairwise(iterable):
"""s -> (s0,s1), (s1,s2), (s2, s3), ..."""
# via https://docs.python.org/dev/library/itertools.html
a, b = itertools.tee(iterable)
next(b, None)
return zip(a, b)
if loop:
zs = np.append(zs, zs[:1], 0)
all_xs = []
for z1, z2 in pairwise(zs):
zs_morph = np.array([np.linspace(start, end, n_per_morph)
# interpolate across every z dimension
for start, end in zip(z1, z2)]).T
xs_reconstructed = model.decode(zs_morph)
all_xs.extend(xs_reconstructed)
for i, x in enumerate(all_xs):
plt.figure(figsize = (5, 5))
plt.imshow(x.reshape([dim, dim]), cmap="Greys")
# axes off
ax = plt.gca()
ax.set_frame_on(False)
ax.set_xticks([])
ax.set_yticks([])
plt.axis("off")
# plt.show()
if save:
title = "{}_latent_{}_round_{}_{}.{}.png".format(
model.datetime, "_".join(map(str, model.architecture)),
model.step, name, i)
plt.savefig(os.path.join(outdir, title), bbox_inches="tight")