-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathtrain_tener_en.py
128 lines (108 loc) · 5.16 KB
/
train_tener_en.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from models.TENER import TENER
from fastNLP.embeddings import CNNCharEmbedding
from fastNLP import cache_results
from fastNLP import Trainer, GradientClipCallback, WarmupCallback
from torch import optim
from fastNLP import SpanFPreRecMetric, BucketSampler
from fastNLP.io.pipe.conll import OntoNotesNERPipe
from fastNLP.embeddings import StaticEmbedding, StackEmbedding, LSTMCharEmbedding
from modules.TransformerEmbedding import TransformerCharEmbed
from modules.pipe import Conll2003NERPipe
import argparse
from modules.callbacks import EvaluateCallback
device = 0
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='en-ontonotes', choices=['conll2003', 'en-ontonotes'])
args = parser.parse_args()
dataset = args.dataset
if dataset == 'conll2003':
n_heads = 14
head_dims = 128
num_layers = 2
lr = 0.0009
attn_type = 'adatrans'
char_type = 'cnn'
elif dataset == 'en-ontonotes':
n_heads = 8
head_dims = 96
num_layers = 2
lr = 0.0007
attn_type = 'adatrans'
char_type = 'adatrans'
pos_embed = None
#########hyper
batch_size = 16
warmup_steps = 0.01
after_norm = 1
model_type = 'transformer'
normalize_embed = True
#########hyper
dropout=0.15
fc_dropout=0.4
encoding_type = 'bioes'
name = 'caches/{}_{}_{}_{}_{}.pkl'.format(dataset, model_type, encoding_type, char_type, normalize_embed)
d_model = n_heads * head_dims
dim_feedforward = int(2 * d_model)
@cache_results(name, _refresh=False)
def load_data():
# 替换路径
if dataset == 'conll2003':
# conll2003的lr不能超过0.002
paths = {'test': "../data/conll2003/test.txt",
'train': "../data/conll2003/train.txt",
'dev': "../data/conll2003/dev.txt"}
data = Conll2003NERPipe(encoding_type=encoding_type).process_from_file(paths)
elif dataset == 'en-ontonotes':
# 会使用这个文件夹下的train.txt, test.txt, dev.txt等文件
paths = '../data/en-ontonotes/english'
data = OntoNotesNERPipe(encoding_type=encoding_type).process_from_file(paths)
char_embed = None
if char_type == 'cnn':
char_embed = CNNCharEmbedding(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, filter_nums=[30],
kernel_sizes=[3], word_dropout=0, dropout=0.3, pool_method='max'
, include_word_start_end=False, min_char_freq=2)
elif char_type in ['adatrans', 'naive']:
char_embed = TransformerCharEmbed(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, word_dropout=0,
dropout=0.3, pool_method='max', activation='relu',
min_char_freq=2, requires_grad=True, include_word_start_end=False,
char_attn_type=char_type, char_n_head=3, char_dim_ffn=60, char_scale=char_type=='naive',
char_dropout=0.15, char_after_norm=True)
elif char_type == 'lstm':
char_embed = LSTMCharEmbedding(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, word_dropout=0,
dropout=0.3, hidden_size=100, pool_method='max', activation='relu',
min_char_freq=2, bidirectional=True, requires_grad=True, include_word_start_end=False)
word_embed = StaticEmbedding(vocab=data.get_vocab('words'),
model_dir_or_name='en-glove-6b-100d',
requires_grad=True, lower=True, word_dropout=0, dropout=0.5,
only_norm_found_vector=normalize_embed)
if char_embed is not None:
embed = StackEmbedding([word_embed, char_embed], dropout=0, word_dropout=0.02)
else:
word_embed.word_drop = 0.02
embed = word_embed
data.rename_field('words', 'chars')
return data, embed
data_bundle, embed = load_data()
print(data_bundle)
model = TENER(tag_vocab=data_bundle.get_vocab('target'), embed=embed, num_layers=num_layers,
d_model=d_model, n_head=n_heads,
feedforward_dim=dim_feedforward, dropout=dropout,
after_norm=after_norm, attn_type=attn_type,
bi_embed=None,
fc_dropout=fc_dropout,
pos_embed=pos_embed,
scale=attn_type=='transformer')
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
callbacks = []
clip_callback = GradientClipCallback(clip_type='value', clip_value=5)
evaluate_callback = EvaluateCallback(data_bundle.get_dataset('test'))
if warmup_steps>0:
warmup_callback = WarmupCallback(warmup_steps, schedule='linear')
callbacks.append(warmup_callback)
callbacks.extend([clip_callback, evaluate_callback])
trainer = Trainer(data_bundle.get_dataset('train'), model, optimizer, batch_size=batch_size, sampler=BucketSampler(),
num_workers=2, n_epochs=100, dev_data=data_bundle.get_dataset('dev'),
metrics=SpanFPreRecMetric(tag_vocab=data_bundle.get_vocab('target'), encoding_type=encoding_type),
dev_batch_size=batch_size*5, callbacks=callbacks, device=device, test_use_tqdm=False,
use_tqdm=True, print_every=300, save_path=None)
trainer.train(load_best_model=False)