forked from tech-srl/lstar_extraction
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLstar.py
26 lines (24 loc) · 913 Bytes
/
Lstar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from ObservationTable import ObservationTable
import DFA
from time import perf_counter
def run_lstar(teacher,time_limit):
table = ObservationTable(teacher.alphabet,teacher)
start = perf_counter()
teacher.counterexample_generator.set_time_limit(time_limit,start)
table.set_time_limit(time_limit,start)
while True:
while True:
while table.find_and_handle_inconsistency():
pass
if table.find_and_close_row():
continue
else:
break
dfa = DFA.DFA(obs_table=table)
print("obs table refinement took " + str(int(1000*(perf_counter()-start))/1000.0) )
counterexample = teacher.equivalence_query(dfa)
if None is counterexample:
break
start = perf_counter()
table.add_counterexample(counterexample,teacher.classify_word(counterexample))
return dfa