-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathresnet_model_official.py
366 lines (300 loc) · 14.7 KB
/
resnet_model_official.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for the preactivation form of Residual Networks.
Residual networks (ResNets) were originally proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
The full preactivation 'v2' ResNet variant implemented in this module was
introduced by:
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Identity Mappings in Deep Residual Networks. arXiv: 1603.05027
The key difference of the full preactivation 'v2' variant compared to the
'v1' variant in [1] is the use of batch normalization before every weight layer
rather than after.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
_BATCH_NORM_DECAY = 0.997
_BATCH_NORM_EPSILON = 1e-5
def batch_norm_relu(inputs, is_training, data_format):
"""Performs a batch normalization followed by a ReLU."""
# We set fused=True for a significant performance boost. See
# https://www.tensorflow.org/performance/performance_guide#common_fused_ops
inputs = tf.layers.batch_normalization(
inputs=inputs, axis=1 if data_format == 'channels_first' else 3,
momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True,
scale=True, training=is_training, fused=True)
inputs = tf.nn.relu(inputs)
return inputs
def fixed_padding(inputs, kernel_size, data_format):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
Should be a positive integer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
A tensor with the same format as the input with the data either intact
(if kernel_size == 1) or padded (if kernel_size > 1).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
padded_inputs = tf.pad(inputs, [[0, 0], [0, 0],
[pad_beg, pad_end], [pad_beg, pad_end]])
else:
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]])
return padded_inputs
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
"""Strided 2-D convolution with explicit padding."""
# The padding is consistent and is based only on `kernel_size`, not on the
# dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
if strides > 1:
inputs = fixed_padding(inputs, kernel_size, data_format)
return tf.layers.conv2d(
inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(),
data_format=data_format)
def building_block(inputs, filters, is_training, projection_shortcut, strides,
data_format):
"""Standard building block for residual networks with BN before convolutions.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the convolutions.
is_training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts (typically
a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately
downsample the input.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block.
"""
shortcut = inputs
inputs = batch_norm_relu(inputs, is_training, data_format)
# The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution.
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=1,
data_format=data_format)
return inputs + shortcut
def bottleneck_block(inputs, filters, is_training, projection_shortcut,
strides, data_format):
"""Bottleneck block variant for residual networks with BN before convolutions.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the first two convolutions. Note that the
third and final convolution will use 4 times as many filters.
is_training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts (typically
a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately
downsample the input.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block.
"""
shortcut = inputs
inputs = batch_norm_relu(inputs, is_training, data_format)
# The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution.
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=1,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
data_format=data_format)
return inputs + shortcut
def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name,
data_format):
"""Creates one layer of blocks for the ResNet model.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the first convolution of the layer.
block_fn: The block to use within the model, either `building_block` or
`bottleneck_block`.
blocks: The number of blocks contained in the layer.
strides: The stride to use for the first convolution of the layer. If
greater than 1, this layer will ultimately downsample the input.
is_training: Either True or False, whether we are currently training the
model. Needed for batch norm.
name: A string name for the tensor output of the block layer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block layer.
"""
# Bottleneck blocks end with 4x the number of filters as they start with
filters_out = 4 * filters if block_fn is bottleneck_block else filters
def projection_shortcut(inputs):
return conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
data_format=data_format)
# Only the first block per block_layer uses projection_shortcut and strides
inputs = block_fn(inputs, filters, is_training, projection_shortcut, strides,
data_format)
for _ in range(1, blocks):
inputs = block_fn(inputs, filters, is_training, None, 1, data_format)
return tf.identity(inputs, name)
def cifar10_resnet_v2_generator(resnet_size, num_classes, data_format=None):
"""Generator for CIFAR-10 ResNet v2 models.
Args:
resnet_size: A single integer for the size of the ResNet model.
num_classes: The number of possible classes for image classification.
data_format: The input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
Returns:
The model function that takes in `inputs` and `is_training` and
returns the output tensor of the ResNet model.
Raises:
ValueError: If `resnet_size` is invalid.
"""
if resnet_size % 6 != 2:
raise ValueError('resnet_size must be 6n + 2:', resnet_size)
num_blocks = (resnet_size - 2) // 6
if data_format is None:
data_format = (
'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')
def model(inputs, is_training):
"""Constructs the ResNet model given the inputs."""
if data_format == 'channels_first':
# Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
# This provides a large performance boost on GPU. See
# https://www.tensorflow.org/performance/performance_guide#data_formats
inputs = tf.transpose(inputs, [0, 3, 1, 2])
inputs = conv2d_fixed_padding(
inputs=inputs, filters=16, kernel_size=3, strides=1,
data_format=data_format)
inputs = tf.identity(inputs, 'initial_conv')
inputs = block_layer(
inputs=inputs, filters=16, block_fn=building_block, blocks=num_blocks,
strides=1, is_training=is_training, name='block_layer1',
data_format=data_format)
inputs = block_layer(
inputs=inputs, filters=32, block_fn=building_block, blocks=num_blocks,
strides=2, is_training=is_training, name='block_layer2',
data_format=data_format)
inputs = block_layer(
inputs=inputs, filters=64, block_fn=building_block, blocks=num_blocks,
strides=2, is_training=is_training, name='block_layer3',
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format)
inputs = tf.layers.average_pooling2d(
inputs=inputs, pool_size=8, strides=1, padding='VALID',
data_format=data_format)
inputs = tf.identity(inputs, 'final_avg_pool')
inputs = tf.reshape(inputs, [-1, 64])
inputs = tf.layers.dense(inputs=inputs, units=num_classes)
inputs = tf.identity(inputs, 'final_dense')
return inputs
return model
def imagenet_resnet_v2_generator(block_fn, layers, num_classes,
data_format=None):
"""Generator for ImageNet ResNet v2 models.
Args:
block_fn: The block to use within the model, either `building_block` or
`bottleneck_block`.
layers: A length-4 array denoting the number of blocks to include in each
layer. Each layer consists of blocks that take inputs of the same size.
num_classes: The number of possible classes for image classification.
data_format: The input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
Returns:
The model function that takes in `inputs` and `is_training` and
returns the output tensor of the ResNet model.
"""
if data_format is None:
data_format = (
'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')
def model(inputs, is_training):
"""Constructs the ResNet model given the inputs."""
if data_format == 'channels_first':
# Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
# This provides a large performance boost on GPU. See
# https://www.tensorflow.org/performance/performance_guide#data_formats
inputs = tf.transpose(inputs, [0, 3, 1, 2])
inputs = conv2d_fixed_padding(
inputs=inputs, filters=64, kernel_size=7, strides=2,
data_format=data_format)
inputs = tf.identity(inputs, 'initial_conv')
inputs = tf.layers.max_pooling2d(
inputs=inputs, pool_size=3, strides=2, padding='SAME',
data_format=data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
inputs = block_layer(
inputs=inputs, filters=64, block_fn=block_fn, blocks=layers[0],
strides=1, is_training=is_training, name='block_layer1',
data_format=data_format)
inputs = block_layer(
inputs=inputs, filters=128, block_fn=block_fn, blocks=layers[1],
strides=2, is_training=is_training, name='block_layer2',
data_format=data_format)
inputs = block_layer(
inputs=inputs, filters=256, block_fn=block_fn, blocks=layers[2],
strides=2, is_training=is_training, name='block_layer3',
data_format=data_format)
inputs = block_layer(
inputs=inputs, filters=512, block_fn=block_fn, blocks=layers[3],
strides=2, is_training=is_training, name='block_layer4',
data_format=data_format)
inputs = batch_norm_relu(inputs, is_training, data_format)
inputs = tf.layers.average_pooling2d(
inputs=inputs, pool_size=7, strides=1, padding='VALID',
data_format=data_format)
inputs = tf.identity(inputs, 'final_avg_pool')
inputs = tf.reshape(inputs,
[-1, 512 if block_fn is building_block else 2048])
inputs = tf.layers.dense(inputs=inputs, units=num_classes)
inputs = tf.identity(inputs, 'final_dense')
return inputs
return model
def imagenet_resnet_v2(resnet_size, num_classes, data_format=None):
"""Returns the ResNet model for a given size and number of output classes."""
model_params = {
18: {'block': building_block, 'layers': [2, 2, 2, 2]},
34: {'block': building_block, 'layers': [3, 4, 6, 3]},
50: {'block': bottleneck_block, 'layers': [3, 4, 6, 3]},
101: {'block': bottleneck_block, 'layers': [3, 4, 23, 3]},
152: {'block': bottleneck_block, 'layers': [3, 8, 36, 3]},
200: {'block': bottleneck_block, 'layers': [3, 24, 36, 3]}
}
if resnet_size not in model_params:
raise ValueError('Not a valid resnet_size:', resnet_size)
params = model_params[resnet_size]
return imagenet_resnet_v2_generator(
params['block'], params['layers'], num_classes, data_format)