-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLE_SLR_Sim_maxLik_Methods.R
111 lines (86 loc) · 2.94 KB
/
MLE_SLR_Sim_maxLik_Methods.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
library(maxLik)
sim_reg_data <- function(n_obs, betas, sgma) {
X <- matrix(
rnorm( n_obs * length(betas) ),
nrow = n_obs
)
eps <- rnorm(n_obs, sd = sgma)
y <- X %*% betas + eps
return(list(X = X, y = y))
}
logLikFunc <- function(pars, data) {
n <- nrow(data)
K_regressors <- ncol(data) - 1
b_hats <- pars[ 1:K_regressors ]
sgma <- pars[ K_regressors + 1]
y <- data[, 1]
X <- data[, 2:(K_regressors + 1)]
err_resid <- y - X %*% b_hats
# logLikFunc for SLR is given by:
logLikFunc <- -n * log(sgma) - 0.5 * (t(err_resid) %*% err_resid) / sgma^2
return(logLikFunc)
}
# MLE for SLR using the maxLik package
regression_mle <- function(X, y, method = "NR") { # defaults to Newton-Raphson method for maxLik
data <- cbind(y, X)
startVals <- c(
lm(y ~ X - 1)$coefficients,
1)
result <- maxLik(logLik = logLikFunc, start = startVals, method = method, data = data)
return(result)
}
compare_OLS_MLE_estimates <- function(n_sim,
n,
betas,
sgma,
methods = c("BFGS", "BFGSR","NM", "SANN", "CG", "NR")) {
results <- list()
lm_times <- numeric(n_sim)
mle_times <- matrix(0, n_sim, length(methods))
colnames(mle_times) <- methods
for (i in 1:n_sim) {
data <- sim_reg_data(n, betas, sgma)
X <- data$X
y <- data$y
lm_start <- Sys.time()
lm_fit <- lm(y ~ X - 1)
lm_end <- Sys.time()
lm_times[i] <- as.numeric(difftime(lm_end, lm_start, units = "secs"))
lm_coef <- coef(lm_fit)
lm_sigma <- summary(lm_fit)$sigma
for (method in methods) {
mle_start <- Sys.time()
mle_fit <- regression_mle(X, y, method = method)
mle_end <- Sys.time()
mle_times[i, method] <- as.numeric(difftime(mle_end, mle_start, units = "secs"))
mle_coef <- coef(mle_fit)[1:ncol(X)]
mle_sigma <- coef(mle_fit)[ncol(X) + 1]
if (is.null(results[[method]])) {
results[[method]] <- list(lm_coef = matrix(0, n_sim, length(betas)),
mle_coef = matrix(0, n_sim, length(betas)),
lm_sigma = numeric(n_sim),
mle_sigma = numeric(n_sim))
}
results[[method]]$lm_coef[i, ] <- lm_coef
results[[method]]$mle_coef[i, ] <- mle_coef
results[[method]]$lm_sigma[i] <- lm_sigma
results[[method]]$mle_sigma[i] <- mle_sigma
}
}
lm_time_mean <- mean(lm_times)
lm_time_sd <- sd(lm_times)
mle_time_means <- colMeans(mle_times)
mle_time_sds <- apply(mle_times, 2, sd)
return(list(results = results,
lm_time_mean = lm_time_mean,
lm_time_sd = lm_time_sd,
mle_time_means = mle_time_means,
mle_time_sds = mle_time_sds))
}
# Run Simulations
n_sim <- 10
n <- 10000
betas <- c(5, 2, 4)
sgma <- 1.75
comparison <- compare_OLS_MLE_estimates(n_sim, n, betas, sgma)
print(comparison)