-
Notifications
You must be signed in to change notification settings - Fork 3
/
fitData.R
117 lines (97 loc) · 3.7 KB
/
fitData.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#################################################
# Automatic distribution fitting and selection
#
# Copyright 2014 worldofpiggy.com
#################################################
library(MASS)
#Usage:
#data, numeric vector of observations of unknown distribution
#fit, a list of distributions to fit data
#sample, rate of subsampling (0.5 means that a sample 50% of data will be considered)
fitData <- function(data, fit="gamma", sample=0.5){
distrib = list()
numfit <- length(fit)
results = matrix(0, ncol=5, nrow=numfit)
for(i in 1:numfit){
if((fit[i] == "gamma") |
(fit[i] == "poisson") |
(fit[i] == "weibull") |
(fit[i] == "exponential") |
(fit[i] == "logistic") |
(fit[i] == "normal") |
(fit[i] == "geometric")
)
distrib[[i]] = fit[i]
else stop("Provide a valid distribution to fit data" )
}
# take a sample of dataset
n = round(length(data)*sample)
data = sample(data, size=n, replace=F)
for(i in 1:numfit) {
if(distrib[[i]] == "gamma") {
gf_shape = "gamma"
fd_g <- fitdistr(data, "gamma")
est_shape = fd_g$estimate[[1]]
est_rate = fd_g$estimate[[2]]
ks = ks.test(data, "pgamma", shape=est_shape, rate=est_rate)
# add to results
results[i,] = c(gf_shape, est_shape, est_rate, ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "poisson"){
gf_shape = "poisson"
fd_p <- fitdistr(data, "poisson")
est_lambda = fd_p$estimate[[1]]
ks = ks.test(data, "ppois", lambda=est_lambda)
# add to results
results[i,] = c(gf_shape, est_lambda, "NA", ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "weibull"){
gf_shape = "weibull"
fd_w <- fitdistr(data,densfun=dweibull,start=list(scale=1,shape=2))
est_shape = fd_w$estimate[[1]]
est_scale = fd_w$estimate[[2]]
ks = ks.test(data, "pweibull", shape=est_shape, scale=est_scale)
# add to results
results[i,] = c(gf_shape, est_shape, est_scale, ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "normal"){
gf_shape = "normal"
fd_n <- fitdistr(data, "normal")
est_mean = fd_n$estimate[[1]]
est_sd = fd_n$estimate[[2]]
ks = ks.test(data, "pnorm", mean=est_mean, sd=est_sd)
# add to results
results[i,] = c(gf_shape, est_mean, est_sd, ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "exponential"){
gf_shape = "exponential"
fd_e <- fitdistr(data, "exponential")
est_rate = fd_e$estimate[[1]]
ks = ks.test(data, "pexp", rate=est_rate)
# add to results
results[i,] = c(gf_shape, est_rate, "NA", ks$statistic, ks$p.value)
}
else if(distrib[[i]] == "logistic"){
gf_shape = "logistic"
fd_l <- fitdistr(data, "logistic")
est_location = fd_l$estimate[[1]]
est_scale = fd_l$estimate[[2]]
ks = ks.test(data, "plogis", location=est_location, scale=est_scale)
# add to results
results[i,] = c(gf_shape, est_location, est_scale, ks$statistic, ks$p.value)
}
}
results = rbind(c("distribution", "param1", "param2", "ks stat", "ks pvalue"), results)
#print(results)
return(results)
}
# let's try this out
#example: normal (easily confused by an 'equivalent' gamma)
data = rnorm(100000, mean=5, sd=0.75)
res = fitData(data, fit=c("logistic", "normal", "exponential", "poisson"), sample=1)
#example: exponential
data = rexp(100000,rate=2.3)
res = fitData(data, fit=c("logistic", "normal", "exponential", "poisson"), sample=1)
# example: gamma
data= rgamma(100000, shape=3.2, rate=1.3)
res = fitData(data, fit=c("logistic", "normal", "exponential", "gamma", "poisson"), sample=0.1)