-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
223 lines (200 loc) · 9.45 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import cv2
import random
import numpy as np
from PIL import Image
import filters
SUBSET_DIR_NAMES = ['COVID', 'NORMAL', 'Viral Pneumonia']
RANDOM_SEED = 42
class DataLoader:
def __init__(self, opt):
"""
:param opt:
"""
self.opt = opt
self.train_samples, self.train_labels = [], []
self.get_features("train")
self.load_train_data()
if opt.phase != "train": # test phase
self.test_samples, self.test_labels = [], []
self.get_features("test")
self.load_test_data()
print("Data loaded")
def get_features(self, folder_name):
# get saved features or create files to save features
if self.opt.canny:
self.canny_path = self.opt.features_path + "/" + folder_name + "/canny.txt"
if os.path.exists(self.canny_path):
self.canny_read = True
self.canny_iter = iter(np.loadtxt(self.canny_path, dtype=int))
else:
self.canny_read = False
open(self.canny_path, 'wb')
self.canny_features = []
if self.opt.gabor:
self.gabor_path = self.opt.features_path + "/" + folder_name + "/gabor.txt"
if os.path.exists(self.gabor_path):
self.gabor_read = True
self.gabor_iter = iter(np.loadtxt(self.gabor_path, dtype=int))
else:
self.gabor_read = False
open(self.gabor_path, 'wb')
self.gabor_features = []
if self.opt.hog:
self.hog_path = self.opt.features_path + "/" + folder_name + "/hog.txt"
if os.path.exists(self.hog_path):
self.hog_read = True
self.hog_iter = iter(np.loadtxt(self.hog_path, dtype=np.float32))
else:
self.hog_read = False
open(self.hog_path, 'wb')
self.hog_features = []
if self.opt.vgg19:
self.vgg19_path = self.opt.features_path + "/" + folder_name + "/vgg19.txt"
if os.path.exists(self.vgg19_path):
self.vgg19_read = True
self.vgg19_iter = iter(np.loadtxt(self.vgg19_path, dtype=np.float32))
else:
self.vgg19 = filters.VGG19()
self.vgg19_read = False
open(self.vgg19_path, 'wb')
self.vgg19_features = []
def extract_features(self, path, img_size=(64, 64), tiny_img_size=(16, 16)):
# extract features from images or read features from files
print("Extracting features from " + path)
image = cv2.imread(path)
image_features = np.array([], dtype=np.float32)
if self.opt.canny:
if self.canny_read:
canny_flatten = next(self.canny_iter)
if self.opt.normalize:
norm = np.linalg.norm(canny_flatten)
if norm != 0.0:
canny_flatten = canny_flatten / norm
image_features = np.concatenate((image_features, canny_flatten), axis=0)
else:
canny = filters.canny_edge(image)
canny.resize(img_size, refcheck=False)
canny_flatten = canny.flatten()
self.canny_features.append(canny_flatten)
if self.opt.normalize:
norm = np.linalg.norm(canny_flatten)
if norm != 0.0:
canny_flatten = canny_flatten / norm
image_features = np.concatenate((image_features, canny_flatten), axis=0)
if self.opt.gabor:
if self.gabor_read:
gabor_flatten = next(self.gabor_iter)
if self.opt.normalize:
norm = np.linalg.norm(gabor_flatten)
if norm != 0.0:
gabor_flatten = gabor_flatten / norm
image_features = np.concatenate((image_features, gabor_flatten), axis=0)
else:
gabor = filters.gabor_process(image)
gabor.resize(img_size)
gabor_flatten = gabor.flatten()
self.gabor_features.append(gabor_flatten)
if self.opt.normalize:
norm = np.linalg.norm(gabor_flatten)
if norm != 0.0:
gabor_flatten = gabor_flatten / norm
image_features = np.concatenate((image_features, gabor_flatten), axis=0)
if self.opt.hog:
if self.hog_read:
hog_flatten = next(self.hog_iter)
if self.opt.normalize:
norm = np.linalg.norm(hog_flatten)
if norm != 0.0:
hog_flatten = hog_flatten / norm
image_features = np.concatenate((image_features, hog_flatten), axis=0)
else:
hog = filters.histogram_of_oriented_gradients(image)
hog.resize(img_size)
hog_flatten = hog.flatten()
self.hog_features.append(hog_flatten)
if self.opt.normalize:
norm = np.linalg.norm(hog_flatten)
if norm != 0.0:
hog_flatten = hog_flatten / norm
image_features = np.concatenate((image_features, hog_flatten), axis=0)
if self.opt.vgg19:
if self.vgg19_read:
vgg19_extracted = next(self.vgg19_iter)
if self.opt.normalize:
norm = np.linalg.norm(vgg19_extracted)
if norm != 0.0:
vgg19_extracted = vgg19_extracted / norm
image_features = np.concatenate((image_features, vgg19_extracted), axis=0)
else:
pil_image = Image.open(path).convert("RGB")
vgg19_extracted = self.vgg19.forward(pil_image)
vgg19_extracted = vgg19_extracted.numpy()[0]
self.vgg19_features.append(vgg19_extracted)
if self.opt.normalize:
norm = np.linalg.norm(vgg19_extracted)
if norm != 0.0:
vgg19_extracted = vgg19_extracted / norm
image_features = np.concatenate((image_features, vgg19_extracted), axis=0)
if self.opt.tiny_img:
tiny_flatten = cv2.cvtColor(cv2.resize(image, tiny_img_size), cv2.COLOR_BGR2GRAY).flatten()
if self.opt.normalize:
norm = np.linalg.norm(tiny_flatten)
if norm != 0.0:
tiny_flatten = tiny_flatten / norm
image_features = np.concatenate((image_features, tiny_flatten), axis=0)
# if no image feature specified, extract 64x64 feature
if self.opt.small_img or image_features.size == 0:
small_flatten = cv2.cvtColor(cv2.resize(image, img_size), cv2.COLOR_BGR2GRAY).flatten()
if self.opt.normalize:
norm = np.linalg.norm(small_flatten)
if norm != 0.0:
small_flatten = small_flatten / norm
image_features = np.concatenate((image_features, small_flatten), axis=0)
return image_features
def save_features(self):
# save features to file for reuse
if self.opt.canny:
if not self.canny_read:
np.savetxt(self.canny_path, self.canny_features, fmt='%d')
if self.opt.gabor:
if not self.gabor_read:
np.savetxt(self.gabor_path, self.gabor_features, fmt='%d')
if self.opt.hog:
if not self.hog_read:
np.savetxt(self.hog_path, self.hog_features, fmt='%f')
if self.opt.vgg19:
if not self.vgg19_read:
np.savetxt(self.vgg19_path, self.vgg19_features, fmt='%f')
def load_train_data(self):
dataset = []
for subset_dir_name in SUBSET_DIR_NAMES:
subset_img_names = sorted(os.listdir(self.opt.dataroot + '/train/' + subset_dir_name))
for img_name in subset_img_names:
sample = {
'sample': self.extract_features(self.opt.dataroot + '/train/' + subset_dir_name + '/' + img_name),
'label': SUBSET_DIR_NAMES.index(subset_dir_name)}
dataset.append(sample)
random.Random(RANDOM_SEED).shuffle(dataset)
self.save_features()
for data in dataset:
self.train_samples.append(data['sample'])
self.train_labels.append(data['label'])
def load_test_data(self):
img_names = sorted(os.listdir(self.opt.dataroot + '/test'))
for img_name in img_names:
self.test_samples.append(self.extract_features(self.opt.dataroot + '/test/' + img_name))
# find label of the test image
for i in range(len(SUBSET_DIR_NAMES)):
if SUBSET_DIR_NAMES[i] in img_name:
self.test_labels.append(i)
break
self.save_features()
def split_cross_valid(self):
# get split data for k-fold cross validation
return np.array_split(np.array(self.train_samples, dtype=np.float32), self.opt.fold_num), \
np.array_split(np.array(self.train_labels, dtype=np.int32), self.opt.fold_num)
def get_train_test_data(self):
# get all data for test phase
return np.array(self.train_samples, dtype=np.float32), np.array(self.train_labels, dtype=np.int32), \
np.array(self.test_samples, dtype=np.float32), np.array(self.test_labels, dtype=np.int32)